
UML for Managers Chapter 4 www.parlezuml.com

1

© Jason Gorman 2005

UML for Managers

Jason Gorman

Chapter 4

March 6, 2005

UML for Managers Chapter 4 www.parlezuml.com

2

© Jason Gorman 2005

Applying UML Part II..3

Business Modeling in UML...3
Enterprise Architecture...11
Enterprise Traceability & Model-driven Architecture ...16
Further Reading..19

UML for Managers Chapter 4 www.parlezuml.com

3

© Jason Gorman 2005

Applying UML Part II

People often make the mistake of thinking that UML is only useful for specifying or
documenting software architecture. This is understandable, since software design has
been the main thrust of companies and educators working with UML over the last 8
years.

However, an information system isn’t necessarily something that lives on a computer.
As much work goes on in the average organization as a result of people creating and
manipulating information as goes on inside their computers.

Business architecture is arguably more critical than software architecture, and yet
many organizations that invest time and money on software modeling neglect the
design of the business itself. How many of us have suffered at the hands of poor
customer service, only to discover that the culprit has invested heavily in Customer
Relationship Management (CRM) software?

Software by itself rarely solves business problems: people using software – now that’s
a different story. Business analysts and enterprise architects should concern
themselves with the way things are done in a business – whether it involves software
or not. All too often, they concern themselves with software requirements and
software architecture at the expense of understanding how the software will actually
be used in real business processes. Failure to understand the problem will almost
certainly lead you to the wrong solution.

In this chapter, we’ll look at how UML can be used to help us describe business
architecture, and how these business models can be effectively mapped on to software
specifications to better ensure that the code you write is the right code for your
business.

We will also look at enterprise architecture – an overloaded term that means many
things to many different people – and try to clear up some of the confusion about what
it is and why we need it.

Business Modeling in UML

There are 4 aspects of our business that we can model using UML:

• Business goals
• Business processes
• Business structure
• Business rules

These 4 faces of business modeling link very closely together. Goals apply to
processes. Processes create and manipulate business objects. Rules apply to business
objects and business processes.

UML for Managers Chapter 4 www.parlezuml.com

4

© Jason Gorman 2005

GoalsGoals

ProcessesProcessesStructureStructure

RulesRules

Fig 4.1. The 4 faces of business modeling in UML

In UML, business goals can be thought of as objects – instances of the type Goal.
Goals can be measurable – which we call quantitative goals – or immeasurable –
which we call qualitative goals.

Fig 4.2. Business goals can be modeled as objects

<<goal>>
print > 10,000 copies per day : Q uantita tive Goal

<<goal>>
sell > 10,000 c opies per day : Quantitati ve Goal

<<goal>>
ship > 10,000 copies a day : Q uantita tive Goal

<<goal>>
sell > 350,000 copies in a year : Quantitative G oal

{complete}

<<problem>>
unable to deliver more than 5,000 c opi es a day

<<problem>>
unable to deliver more than 5,000 c opi es a day

<<cause>>
van onl y hol ds 2,500 c opi es and can

onl y fit in one delivery per day

<<cause>>
van onl y hol ds 2,500 c opi es and can

onl y fit in one delivery per day
<<action>>

Lease second van
<<action>>

Lease second van

UML for Managers Chapter 4 www.parlezuml.com

5

© Jason Gorman 2005

In this example, we are using UML extensions for business modeling created by
Eriksson and Penker1. You’ll notice the use of stereotypes like <<goal>> and
<<problem>> to add extra information to the object diagram that’s specific to
business modeling.

Goals can be composed of other goals. This tells us that, in order to achieve one goal,
we must achieve other goals. For example, in order to sell more than 350,000 copies
of our book each year, we have to print, ship and sell more than 10,000 copies a day.
The constraint {complete} tells us that if we satisfy the three lower goals, we will
have completely satisfied the higher goal.

We can attach stereotyped notes to goals to describe the problems we face in
achieving them, as well as actions for overcoming those barriers.

Using this notation, we are able to describe complex, multi-level business strategies.
This provides a great starting point for a strategic program of business change,
because now we have a clearer idea of what we’re setting out to achieve and what we
need to change to achieve it.

Next, a business analyst might like to look at the business processes that will have to
change if the goals are to be met.

Fig 4.4. Business process models show how processes impact business goals, as well as the people,
resources and information involved in those processes. It also helps to visualize at a high level how
business processes fit together.

Again, we’re using Eriksson-Penker UML extensions to add extra information to our
model that’s specific to business architecture.

What this example doesn’t show is the detail inside each business process. We can
use UML activity diagrams to model processes in more detail, but it helps enormously
to have a bird’s eye view to begin with – especially as business processes can be very
complex and most organizations have many business processes.

< <process>>

Printing Process

<<process>>

Production
Design Process

<<process>>

Writing Process
<<abstrac t>>

: Book
[in production] <<abstrac t>>

: Book
[print- ready]

<<physical>>
: Printed C opy

<<information>>
: Des ign Br ief

<<goal>>
pr int > 10,000 copies per day : Q uantitative Goal

<<physical>>
: Paper

<<suppl y>>

<< achieve>>

<<person>>
editor

<<control>><<control>>

<<person>>
aut hor

<<suppl y>>

<<supply>>

UML for Managers Chapter 4 www.parlezuml.com

6

© Jason Gorman 2005

In this example, we can see clearly that our program of change should focus on the
printing process. The next step would be to explore that process in much more detail.
At this point, many organisations make the mistake of using interviews and meeting
rooms to help them learn about a business process. This is nonsense of course! Would
you get on a plane that’s being flown by someone who interviewed some pilots and
drew a few process diagrams? Your analysts should go and see the processes for
themselves and collect rich data (documents, databases, photos, videos etc) to help
them fully understand what’s going on. They can then bring this data back to the
office and examine it at their leisure. The resulting models will be much more
accurate and therefore useful.

Of course, if the aim is to improve a process, your analysts will need to work with the
experts – the people who do that job day-in and day-out – to define new ways of
working. As much as UML can help in gaining an overview of this, ultimately the end
product is not a UML model, and you must always bear this in mind.

In understanding business processes, it’s also very helpful to understand the objects
that are involved and how they are related.

<<person>>
Person

Name : String
Age : Integer

<<abstract>>
Book

**
author

<<abstract>>
Company

Established : Year

publi sher1

* title

pri nters

customer

*

*

employee
*

employer
*

editor 1

0. .11

<<abst ract>>
Production Design

1

*revisi ons
{ordered}

0. .1

1

<<abstract>>
Draft Manuscript

drafts
{ordered}

*

<<i nformation>>
Design Brief

Fig 4.5. A business structure model describes the types of objects involved in business processes.

You will hear these kinds of models referred to in several different ways, including
business object models and business domain models. Simply, they are models of the
types of things involved in business processes and the relationships between them.
I’m sure you can see how useful this model would be if we were ever asked to build
software to help in the publishing process.

Finally, we need some way of describing the rules that apply to our business objects
and business processes. In a previous chapter, we already saw how UML models can
be extended using constraints. This is exactly how we should model business rules.
Ideally, our rules should be clear and unambiguous – particularly if we’re thinking
about building software in the future.

UML for Managers Chapter 4 www.parlezuml.com

7

© Jason Gorman 2005

The Object Constraint Language provides us with a precise language for defining
rules that apply to our models. The irony is that, while OCL has most value in
business modeling, most business analysts find learning OCL very hard. To be
effective with OCL, you need to think like a programmer and have an innate
understanding of logic and object oriented programming. Many analysts come from
business backgrounds and are ill-equipped for precise object oriented modeling using
OCL.

<<pe rson >>
Person

Name : String
Age : Integer

<<abstract>>
Bo ok

**
author

<<abstract>>
Company

Establi shed : Year

publish er1

* titl e

pri nters

customer

*

*

employee
*

employer
*

editor 1

0..11

<<abstract>>
Production Design

1

*revi si ons
{ordered}

0..1

1

<<abstract>>
Draft Manuscri pt

drafts
{ordered}

*

<<information >>
Design Brief

<<business rul e>>

-- if the boo k has a production design t hen t hat produc tion d esign must be approved

inv: productionD esign-> size() > 0 implies productio nDesig n. approved

<<business rul e>>

-- if the boo k has a production design t hen t hat produc tion d esign must be approved

inv: productionD esign-> size() > 0 implies productio nDesig n. approved

Fig 5.6. The same business object model with a constraint.

With the Eriksson-Penker extensions, we can use UML to describe the 4 faces of our
business architecture and effectively exploit modelling in strategic business change
programs.

However, experience has shown that there is one important aspect of business
architecture missing from their interpretation. More and more these days, businesses
want to express a balanced view of their strategic goals. The modern enterprise cannot
succeed just by pursuing a narrow set of financial goals. They must also address the
needs of employees, customers, the local community, the environment, the
government and many more interested parties who are impacted by what businesses
do.

The Balanced Scorecard is a tool for grouping the goals of multiple stakeholders into
perspectives. Commonly, a scorecard has at least 4 such perspectives:

• Financial
• Internal Processes
• Customer
• Learning & Growth

UML for Managers Chapter 4 www.parlezuml.com

8

© Jason Gorman 2005

Many companies create customised scorecards to suit their specific needs, adding
extra perspectives for employees, the environment and so on. Using a balanced
scorecard, we examine the goals of multiple stakeholders in our business and show
how they impact each other.

Financial Perspecti ve Customer Perspecti ve

Process Perspecti ve Learning Perspecti ve

improve
deli ver y
reliability

increase
customer
retention

improve
cash flow

reduce
debtor
days

reduce
operating
expenses

improve
sales

efficiency

improve
technol ogy

skills

Fig 5.7. A balanced scorecard shows the goals of multiple stakeholders and how they might be related.

Next, they design performance measures – formulas that describe how they’ll know
whether a goal is being met or not – and set targets for improvement. Many large
organisations employ what are called “digital dashboards” – simple user interfaces
that managers can see at a glance what the value of these measures are in their
business at any point in time. They then use their understanding of how these
measures are related to “steer” the enterprise. (eg, increasing employee bonuses to
boost production).

It is unlikely that our theories about how different measures relate to each other will
be spot on at the start. We should learn from experience and refine our scorecard with
each new lesson. Over time, the aim is to build up an accurate high-level picture of
the “levers” in our business and what the effect of pulling each lever will be.

UML for Managers Chapter 4 www.parlezuml.com

9

© Jason Gorman 2005

improve delivery reliability : Goal

<<perspecti ve>>
customer

reduce debtor days : Goal

<<perspecti ve>>
financial

: Relati onship
theory = “the sooner we fulfill
orders, the sooner we can get

paid”

from

to

Fig 5.8. Using UML packages and associat ed extensions to model a balanced scorecard

My own contribution to business modelling with UML is in the modelling of these
scorecards, as well as the precise modelling of performance measures that go with
them.

improve delivery reliability : Goal : Target

value = 99.5%
deadline = 1/4/2006

: Measure

expression = “% orders deli vered
on time in full every month”

improve delivery reliability : Goal : Target

value = 99.5%
deadline = 1/4/2006

: Measure

expression = “% orders deli vered
on time in full every month”

UML for Managers Chapter 4 www.parlezuml.com

10

© Jason Gorman 2005

Order

Deliver y

LineItem

Product
Consignment

date : Date
deli ver yDeadline : Date quantit y : Integer

quantity : Integerdate : Date

*1

*1
1

1*

*

Month
Date

after(date : D ate) : Boolean
before(date : Date) : Boolean
= (date : Date) : Boolean

days*1

*

1

0..1

*

/dueForDeli ver y

{ dueF orDelivery = Order.allInstances->select(days->contains(deliver yDeadline)) }

{ deliveredComplete = dueForDelivery->selec t(deli very.c onsignment->forAll(c : Consignment |
lineItem->exists(quantit y = c.quantity and product = c.produc t)) }

{ deliveredCompleteO nTime = deliveredO nTime->asSet()->intersection(deliveredC omplete) }

{percentDeliveredCompleteAndO nTime= deliveredCompleteOnTime->size() / dueForDelivery->size() }

1
1

next

previous

Fig 5.9. OCL constraints can be applied to a business object model to precisely define performance
measures rel ating to business goals

The advantages of modelling performance measures in precise UML are threefold:

1. Unambiguous measures are easier to test – we can use snapshots and
filmstrips to check that our measures work for a range of business scenarios.
This is particularly important because organisations have a tendency to play
“games” with poorly designed performance measures. For example, one
airline famously introduced a measure to help them improve the turnaround
time on baggage handling, which relied on staff getting luggage onto a
conveyor belt as quickly as possible. They were not measuring the time it took
for the passengers’ to actually receive their baggage, so staff were literally
throwing bags off the plane and on to the conveyor, and then leaving them
there! An unambiguous specification of the measure would have helped
highlight such opportunities to “play the system” without actually delivering
performance improvements.

2. Measurement systems specified in unambiguous UML are easier to
implement using software – we can see a direct route from our UML
specifications to working systems. Many – if not most – performance
measurement programs result in some kind of software system for recording
and reporting the measures, so of all our business change programs, we should
naturally expect to end up building software after a scorecard has been agreed.

UML for Managers Chapter 4 www.parlezuml.com

11

© Jason Gorman 2005

There are many commercial off-the-shelf software solutions for reporting
scorecards, but we still have to write the code that implements each measure.

3. Measures specified in unambiguous UML are difficult to misinterpret –
quite often in large organisations, different offices/branches will interpret the
same measures differently. So baggage handling efficiency for our airline at
JFK airport in New York may well be measured differently at London
Heathrow. If our baggage handlers in London use the “time to conveyor belt”
system, but our baggage handlers in New York use a “time to get to
passenger” system, it’s quite possible that London could score higher with
worse actual business performance. Management may decide to transfer
business practices from London to New York in a misguided attempt to
improve performance at JFK. Inconsistency in performance measurement can
produce misleading results and cause managers to “steer” their strategy based
on false intelligence.

Most valuable for me is that specifying business goals and associated performance
measures in UML allows us to tie them closely to our models of business processes,
business structure and business rules, giving a much more complete and consistent
picture. If the same types of objects involved in business processes and business rules
are applied to business performance measures, we can build a truly unified picture of
the business architecture – from strategy right down to the design of database tables –
using the same modelling language.

In many senses, we should view UML as a business modelling language just as much
as we view it as a software modelling language. Indeed, the further up we go from
software, the more valuable our models become.

Enterprise Architecture

I class the kinds of models we’ve discussed in this chapter as enterprise models. They
form the basis of enterprise architecture. There’s a lot of noise being made in the IT
industry at the moment about enterprise architecture. It seems every man and his dog
has something to say about it.

Some people define enterprise architecture as the architecture of enterprise software
systems and how they fit together to execute business processes that span multiple
systems and potentially multiple organisations.

We distinguish enterprise software from other kinds of software – like desktop
applications, for example – because they share a set of similar characteristics.

The typical characteristics of this interpretation of “enterprise architecture” are
systems that are:

• Multi-layered – the key responsibilities of accepting user input, displaying
data, co-coordinating transactions and processes, modeling business data,
enforcing business rules, and storing and retrieving that data (this is an
oversimplification, you understand) are packaged up so that they can exist as

UML for Managers Chapter 4 www.parlezuml.com

12

© Jason Gorman 2005

independently of each other as possible. Why take the time to do this? Because
an important goal of architecture is to make software easier to change, reuse
and extend. The less dependencies there are between different kinds of logic
(display, process, business), the easier it is to change one without impacting
the others. Many of these patterns focus on separating architectural concerns.

• High-volume – typically enterprise systems must handle thousands of
simultaneous users and deal with gigabytes or terabytes of business data.
Traditional object oriented architectures, the kind we used when we were
mainly building single-user desktop applications, fall apart under the strain of
these huge volumes. We want to retain some semblance of object orientation –
largely because it’s always good to stick close to the problem to build a
comprehensible solution – but we have to be very creative about how we use
resources like memory, database connections, threads, and so on.

• Component-based – back in the day, enterprise applications ran on very, very
big centralized computers called “mainframes”. They were written in old
languages like COBOL and Assembler. They were largely batch processors
that shifted and sorted through huge amounts of data very efficiently and
quickly. The code, however, was an absolute nightmare to change. Old
technologies like COBOL suffer from a lack of modularity, which leads to
large amounts of duplication in the code. A simple change to the structure of a
record might require changes to hundreds or thousands of modules that depend
on that structure. The edict of “do everything once and in one place only” is
only possible with an underlying technology that allows us to package and
reuse the logic effectively. Component technologies like COM, CORBA, Java
and .NET make it easier to isolate logic and to reduce the dependencies
between different parts of the system.

• Persistent - although there are several key kinds of enterprise application,
they all have one thing in common. They need to store data somewhere so it
can be retrieved, manipulated and analyzed perhaps years or decades later. If
your business objects can be stored and later retrieved – even after the
computer has been switched off – they are said to be persistent. A bank cannot
afford to lose data, so these data stores have to be extremely robust and
resilient. They also have to be capable of handling enormous amounts of data,
and enormous numbers of database transactions. The most mature database
technology available is relational. IBM, Oracle, Sybase, Microsoft and many
others, have mature relational database products that are the engine of choice
for the vast majority of business applications. It’s just a shame that object and
component technologies like Java and .NET don’t quite fit with the relational
model – which is very outdated and constraining. Solutions exist for mapping
objects onto relational databases, and some database vendors have strong
offerings in the specialized object-relational (or sometimes “post-relational”)
database market space. There are also pure object databases, which cut out
much of the hassle with mapping objects onto relational databases, but they
are not widely used in business applications and as a result carry a high price
tag.

• Transactional – as well as being able to handle large amounts of users and
large amounts of data, enterprise applications have to ensure that data never
gets into an invalid state. Imagine a funds transfer from one bank account to
another failing half way through. The amount is debited from one account, but

UML for Managers Chapter 4 www.parlezuml.com

13

© Jason Gorman 2005

never credited to the other. We would wish this process to either be completed
100% or not at all. A process that must either be 100% complete or not at all is
usually called a transaction. The vast majority of enterprise applications will
have processes that are to some degree transactional. Managing transactions
also requires that you design your software a certain way so that changes to
business data aren’t committed to the data store until the transaction is
complete.

• Concurrent – the data stored in an enterprise application could be used in
multiple transactions at the same time. While one user is transferring funds
from one account to another, another might be withdrawing cash for the same
payer account from an ATM. The first user might start out thinking they have
sufficient funds to cover the transfer, but before the transfer is complete the
account may have been emptied by the second user. Concurrent applications
need to implement policies for handling these scenarios – not an easy task
when you consider the explosion of possibilities with just one account and two
concurrent users. When you have millions of accounts and millions of users,
concurrency needs some serious thought.

• Distributed – typically, enterprise application code doesn’t all sit on the same
computer. You may need multiple computers to handle the processing load.
You may need multiple technology platforms for the same application –
perhaps putting your J2EE business logic on an AS/400 mid-range computer,
and your ASP.NET web front end on a cluster of Windows servers.
Distributing logic and data has many consequences for the design of an
application. Distributed, concurrent applications are an order of magnitude
more complex. The most significant impact of distributing your logic is that
each node in the distributed application has to somehow share common data
with the other nodes.

• Heterogeneous – enterprise applications typically involve multiple
technologies and platforms. To build a web application, developers might use
a programming language like Java, but may also need to use HTML,
JavaScript, SQL, XML, XSLT, WAP/WML, COM+, CORBA, and so on.
Gone are the days when business applications systems could be written
entirely in C.

For the application architect, the leap from single-user desktop applications to multi-
layered, high-volume, persistent, transactional, concurrent and distributed applications
is as big as the leap from programming in COBOL to programming Java. It’s a whole
new kettle of fish!

But enterprise applications are becoming the norm. Most software being built these
days has enterprise characteristics, and the skills of the majority of architects and
developers are just beginning to catch up. Hence, there is a high demand for people
with knowledge and experience of “enterprise architecture”. When a skill set is on the
ascendant, we tend to see the market going into hyper-drive. “Enterprise architecture”,
in this sense, is arguably nearing the zenith of this curve.

Meanwhile, a new interpretation of “enterprise architecture” is starting to gain
momentum. There are those of us who have long seen it as the “architecture of the
enterprise” rather than just design patterns for high-volume software applications.
Though software is undeniably a significant factor in the running of a business these

UML for Managers Chapter 4 www.parlezuml.com

14

© Jason Gorman 2005

days, it’s by no means the be-all and end-all. In most businesses, people are a far
more significant factor. People use software to do their jobs. It is the “doing of jobs”
that interests me far more than the design of the software being used to do them – if
software is being used at all (and in many business processes, software still plays no
part).

The new “enterprise architects” are concerned with the business information model –
with or without software. An information system does not have to live on a computer.
In our daily lives we create, manipulate, analyze and exchange information all the
time. It’s what our brains have evolved to do, and it’s why we have such rich and
sophisticated languages.

Understanding how information is used in a business allows us to exploit many of the
skills and tools we’ve built up for understanding information on computers. After all,
all computing concepts had their genesis in real-world abstractions. Computer science
is a branch of mathematics, and logic doesn’t need silicon chips to exist.

The Unified Modeling Language is built on logical principles. At its most
fundamental, it allows us to model any kind of information, as well as the processes
and rules that apply to that information.

As an “enterprise architect” – one who has progressed from design patterns for
enterprise software applications to the actual informational design of the business
itself – I use UML more to help me visualize and communicate business ideas than I
do to visualize software. This is where UML is at its most powerful – when we’re just
talking about information and logic.

I see modeling as the key component of enterprise architecture – not software or
design patterns. “Enterprise architecture patterns” for me are about what model we
should apply to a specific problem. When I look at the famous Zachman Framework
for Enterprise Architecture, I think about what models would fit into each box and
about how I can join all those models together to give a more complete picture of the
business.

The Zachman Framework (overleaf) is a simple tool for visualizing how the different
pieces of enterprise architecture fit together, and provides us with a conceptual
framework for putting our software and systems into their correct business context.

Many business change programs use the framework – or one on the similar
frameworks for enterprise architecture available today – as a touchstone for co-
coordinating their efforts. You will see that UML can be exploited in the middle three
layers of the Zachman Framework, although most modelers and modeling tool
vendors focus on the 3rd and 4th layers, largely because they approach enterprise
architecture from a software-centric point of view. While they acknowledge the need
for the 1st and 2nd layers in any sufficiently complete picture, they, perhaps
misguidedly, leave those aspects of enterprise architecture to non-modelers – which
often creates the disjoint between business and IT strategy that many organisations
suffer from. Used wisely, UML can help bridge that gap by providing a single, unified
language for describing the strategic aspects of enterprise architecture, as well as the
system/software aspects.

UML for Managers Chapter 4 www.parlezuml.com

15

© Jason Gorman 2005

DataData FunctionFunction NetworkNetwork PeoplePeople TimeTime Motiv ationMotiv ation
what how where who when why

Scope
{contextual}

Scope
{contextual}

Business
Model
{conceptual}

Business
Model
{conceptual}

System
Model
{logical}

System
Model
{logical}

Technology
Model
{physical}

Technology
Model
{physical}

Detailed
Representation
{out-of-context}

Detailed
Representation
{out-of-context}

Functioning
Enterprise

Functioning
Enterprise

List of things
Important to
the business

List of things
Important to
the business

List of processes
the business
performs

List of processes
the business
performs

List of location s
in which the
business
operates

List of location s
in which the
business
operates

List of
organisations
important to the
business

List of
organisations
important to the
business

List of
events/cycles
important to the
business

List of
events/cycles
important to the
business

List of business
goals/strategies

List of business
goals/strategies

Eg, Busin ess
Domain Model

Eg, Busin ess
Domain Model Eg, Busin ess

Process Model
Eg, Busin ess
Process Model Eg, Logistical

Model
Eg, Logistical
Model Eg, Workflow

Model
Eg, Workflow
Model Eg, ScheduleEg, Schedule Eg, Balanced

Scorecard
Eg, Balanced
Scorecard

Eg, Logical Class
Model

Eg, Logical Class
Model Eg, Use Case

Model
Eg, Use Case
Model Eg, Deployment

Model
Eg, Deplo yment
Model Eg, Interaction

Design
Eg, Interaction
Design Eg, Object

Lifecycle
Eg, Object
Lifecycle Eg, Busin ess

Rules (English)
Eg, Busin ess
Rules (English)

Eg, J2EE
Component
Model

Eg, J2EE
Component
Model

Eg, Program
Flow Models

Eg, Program
Flow Models Eg, Hard ware

Model
Eg, Hard ware
Model Eg, UI DesignEg, UI Design Eg, Component

Lifecycle
Eg, Component
Lifecycle Eg, Constraints

(OCL)
Eg, Constraints
(OCL)

Eg, Entit y B eans,
EJB deplo yment
descriptors, SQL
DDL etc

Eg, Entit y B eans,
EJB deplo yment
descriptors, SQL
DDL etc

Eg, Java Program
Code

Eg, Java Program
Code Eg, Ph ysical

Hard ware Sp ecs
(eg, IP
addresses)

Eg, Ph ysical
Hard ware Sp ecs
(eg, IP
addresses)

Eg, Securit y
Architecture

Eg, Securit y
Arch itecture Eg, Timing

Definition
Eg, Timing
Definition Eg, Code

Assertion s (Java,
SQL)

Eg, Code
Assertion s (Java,
SQL)

< < bu sin e ss rule > >

- -if t he bo ok h as a pro du ctio n d esig n th en th at pr od uc tio n de sig nm u st be a pp ro ve d
in v : p ro du ctio n De sig n -> siz e() > 0 im plie s p ro du ctio n D esig n .a ppr ov ed

< < bu sin e ss rule > >

- -if t he bo ok h as a pro du ctio n d esig n th en th at pr od uc tio n de sig nm u st be a pp ro ve d
in v : p ro du ctio n De sig n -> siz e() > 0 im plie s p ro du ctio n D esig n .a ppr ov ed

Eg, DAT AEg, DAT A Eg, FUNCTIONEg, FUNCTION Eg, NETWORKEg, NETW ORK Eg,
ORGANISATION

Eg,
ORGANISATION Eg, SCHEDULEEg, SCHEDULE Eg, STR ATEGYEg, STR ATEGY

Fig 5.6. The Zachman Framework for Enterprise Architecture.

UML for Managers Chapter 4 www.parlezuml.com

16

© Jason Gorman 2005

Enterprise Traceability & Model-driven Architecture

Many IT and business managers find the notion of traceability between models and
other – perhaps lower-level - models, and traceability between models and their IT
implementations, very attractive.

The goal of Model-driven Architecture is to provide a seamless and largely automated
path from high-level business-centric models to working software systems. The theory
is that all the logic necessary to understand business applications is captured in
abstract, technology-independent models, and all the knowledge about how to
implement that business logic in, say, J2EE or .NET is defined as automated
transformations that take the abstract models and generate working code from them.

The promise of MDA is a much quicker and smarter route from business logic to
working software – so, theoretically, business change should be quicker and cheaper.
The reality of MDA today falls far short of this promise, despite what you may have
heard. We will look at MDA, and other model-driven software development
processes, in the next chapter.

<<process>>

Writing Process

Web Submissions System

submit draft
review draft

<<goal>>
< 5 revisions : Q uantitati ve Goal

<<achieve>>

<<use>> <<use>>

authors lis t v iewedito
rv iew author details (author)

submissions controller

display author details (author)

author details v iew
<<create>> (author)

author

author first name := get first name()
author last name := get first name()

submissions := get submissions()author details v iew
review submission (submission)

authors lis t v iewedito
rv iew author details (author)

submissions controller

display author details (author)

author details v iew
<<create>> (author)

author

author first name := get first name()
author last name := get first name()

submissions := get submissions()author details v iew
review submission (submission)

<<realizes>>

Fig 5.7. Traceability between different aspects of enterprise architecture

UML for Managers Chapter 4 www.parlezuml.com

17

© Jason Gorman 2005

That said, it can be very useful to understand the relationships between models and
other models, and models and software, to help manage the enterprise architecture
process. Knowing how business goals map on to business processes helps us identify
what processes might need to change if we change the goals. Understanding how
business processes map on to software usage scenarios (use cases), helps us identify
what software features may need to change if we change the business processes in
which they’re used. Understanding what Java components play a part in a usage
scenario helps us identify what code may need to change if we change the use cases.

Traceability can help us to get a feel for the potential impact of change at any level in
our enterprise architecture – which is why it is so attractive to many managers.

Some modeling tools provide what is called a traceability matrix that allows people to
define the dependencies between different aspects of their models and show these in a
table that maps one aspect of the model on to another (eg, use case scenarios on to
design classes). The aim of these tools is to allow managers to predict the impact of
changing one aspect of the model on other aspects that depend on it, in order to help
them plan for change more accurately.

xxxxreview produc tion des ign
xxxsubmit production design

xxxview submiss ion status
xxxupdate draft status
xxxreview draft
xxxsubmit draft

Produc tionDes ignDes ignBriefDr aftManusc riptBookPersonUse Case
Analysis Class

xxxxreview produc tion des ign
xxxsubmit production design

xxxview submiss ion status
xxxupdate draft status
xxxreview draft
xxxsubmit draft

Produc tionDes ignDes ignBriefDr aftManusc riptBookPersonUse Case
Analysis Class

xxxxreview production design
xxxsubmit production design

xxxview submission status
xxxupdate draft status
xxxreview draft
xxxsubmit draft

ProductionDesignDesignBr iefDraftManuscriptBookPersonUse Case
Analysis Class

xxxxreview production design
xxxsubmit production design

xxxview submission status
xxxupdate draft status
xxxreview draft
xxxsubmit draft

ProductionDesignDesignBr iefDraftManuscriptBookPersonUse Case
Analysis Class

Fig 5.8. A traceability matrix shows dependencies between model elements

I would warn you not to get too excited, though. Model traceability is not an exact
science, and estimates based on traceability matrices tend to be no more accurate than
estimates based on the developer’s gut instinct. Most tools require the dependencies
between model elements to be maintained by hand, and it’s an expensive and very hit-
and-miss business.

My advice is to maintain traceability between only the highest-level elements –
business goals and business processes, business processes and use cases – and to draw
your estimates from experience and the instincts of your senior developers.

UML for Managers Chapter 4 www.parlezuml.com

18

© Jason Gorman 2005

Business Model

Requirements Model

Anal ysis Model

Design Model

Impl ementati on
Model

Deployment ModelTest Model

<<trace>>

<<trace>>

<<trace>>

<<trace>>

<<trace>>

<<trace>> <<depend on>>

<<depend on>>

Black-box tes tsBlack-box tes ts

White-box testsWhite-box tests

Business Strateg y
<<trace>>

Fig 5.9. Traceability between different aspects of enterprise architecture (high-level view)

UML for Managers Chapter 4 www.parlezuml.com

19

© Jason Gorman 2005

Further Reading

Business Modeling with UML – Eriksson & Penker

http://www.amazon.com/exec/obidos/ASIN/0471295515/002-8032971-2157620

The Balanced Scorecard

http://www.balancedscorecard.org

The Zachman Framework

http://www.zifa.com

