
© Jason Gorman 2005 1

UML for Java Developers
Jason Gorman

© Jason Gorman 2005 2

Driving Development with Use
Cases

Jason Gorman

© Jason Gorman 2005 3

In Today’s Episode…
• What is a Use Case?
• Use Case-Driven Development
• UML Use Case diagrams

© Jason Gorman 2005 4

What Is A Use Case?
• Describes a functional requirement of the

system as a whole from an external
perspective
– Library Use Case: Borrow book
– VCR Use Case: Set Timer
– Woolworth’s Use Case: Buy cheap plastic

toy
– IT Help Desk Use Case: Log issue

© Jason Gorman 2005 5

Actors In Use Cases
• Actors are external roles
• Actors initiate (and respond to) use cases

– Sales rep logs call
– Driver starts car
– Alarm system alerts duty officer
– Timer triggers email

© Jason Gorman 2005 6

More Use Case Definitions
• “A specific way of using the system by

using some part of the functionality”
Jacobsen

• Are complete courses of events
• Specify all interactions
• Describable using state-transitions or

other diagrams
• Basis for walk-throughs (animations)

© Jason Gorman 2005 7

A Simple Use Case
USE CASE: Place order
GOAL: To submit an order and make a payment
ACTORS: Customer, Accounting
PRIMARY FLOW:
1. Customer selects ‘Place Order’
2. Customer enters name
3. Customer enters product codes for products to be ordered.
4. System supplies a description and price for each product
5. System keeps a running total of items ordered
6. Customer enters payment information
7. Customer submits order
8. System verifies information, saves order as pending, and

forward information to accounting
9. When payment is confirmed, order is marked as confirmed,

and an order ID is returned to customer

© Jason Gorman 2005 8

Suggested Attributes Of Use
Cases

• Name *
• Actors *
• Goal*
• Priority
• Status
• Preconditions
• Post-conditions
• Extension points
• Unique ID

•Used use-cases
•Flow of events (Primary Scenario) *
•Activity diagram
•User interface
•Secondary scenarios
•Sequence diagrams
•Subordinate use cases
•Collaboration diagrams
•Other requirements (eg,
performance, usability)

* Required

© Jason Gorman 2005 9

Use Case-Driven Development

Request cheque book
Withdraw cash

Display balance
Deposit funds

Print mini-statement
Request postal statement

Log in

© Jason Gorman 2005 10

Prioritise Use Cases

Request cheque book

Withdraw cash

Display balance

Deposit funds

Print mini-statement

Request postal statement
importance

Log in

© Jason Gorman 2005 11

Estimate Development Time

Request cheque book

Withdraw cash

Display balance

Deposit funds

Print mini-statement

Request postal statement
importance

12 days

2 days

5 days

10 days

3 days

2 days

Log in 2 days

© Jason Gorman 2005 12

Do Incremental Deliveries (2-3
weeks long)

Request cheque book

Withdraw cash

Display balance

Deposit funds

Print mini-statement

Request postal statement
importance

Log in

Iteration #1

Iteration #2

Iteration #3

© Jason Gorman 2005 13

Simplifying Complex Use Cases
• Strategy #1 : Break large/complex use

cases down into smaller and more
manageable use cases

Go to work Leave house

Walk to station

Buy ticket

Board trainAlight from train

Walk to office
from station

© Jason Gorman 2005 14

Simplifying Complex Use Cases
• Strategy #2 : Break large/complex use

cases down into multiple scenarios (or test
cases)

Withdraw cash

Withdraw cash : Customer
has Sufficient Funds

Withdraw cash : Customer
has insufficient funds

Withdraw cash : ATM cannot
dispense specified amount

© Jason Gorman 2005 15

Relationships Between Use
Cases

• Includes
– Eg, “Go to work” includes “board a train”

• Extends
– Eg, If the trains aren’t running, “catch a bus”

may extend “go to work”
• Generalization

– Eg, “Feed an animal” is a generalization of
“Feed a cat”

© Jason Gorman 2005 16

Use Case Diagrams

Withdraw cash

use case name

Card Holder

actor name

actor

ATM

system
boundary

“communicates”

use case

Bank System

© Jason Gorman 2005 17

Relationships Between Use Cases

Make tea

Boil water

<<include>>

Go to shops

[out of tea] <<extend>>

Walk to shops Drive to shops

Make instant coffee

[out of coffee] <<extend>>

<<include>>

© Jason Gorman 2005 18

Use Case Best Practices
• Keep them simple & succinct
• Don’t write all the use cases up front - develop them
incrementally
• Revisit all use cases regularly
• Prioritise your use cases
• Ensure they have a single tangible & testable goal
• Drive UAT with use cases
• Write them from the user’s perspective, and write them in
the language of the business (Essential Use Cases)
• Set a clear system boundary and do not include any detail
from behind that boundary
•Use animations (walkthroughs) to illustrate use case flow.
Don’t rely on a read-through to validate a use case.
• Look carefully for alternative & exceptional flows

© Jason Gorman 2005 19

Common Use Case Pitfalls

1) The system boundary is undefined or inconstant.
2) The use cases are written from the system's (not the actors') point of view.
3) The actor names are inconsistent.
4) There are too many use cases.
5) The actor-to-use case relationships resemble a spider's web.
6) The use-case specifications are too long.
7) The use-case specifications are confusing.
8) The use case doesn't correctly describe functional entitlement.
9) The customer doesn't understand the use cases.
10) The use cases are never finished.

© Jason Gorman 2005 20

The 4+1 View Of Architecture

Logical Implementation

Process Deployment

Use Cases

© Jason Gorman 2005 21

Further Reading
• “Writing Effective Use Cases” – Alistair Cockburn, Addison Wesley;

ISBN: 0201702258
• “Use Case Driven Object Modelling with UML” Doug Rosenberg, Kendall

Scott, Addison Wesley; ISBN: 0201432897
• “UML Distilled” Martin Fowler, Addison Wesley; ISBN: 020165783X

© Jason Gorman 2005 22

UML for Java Developers
- Object & Sequence

Diagrams
Jason Gorman

© Jason Gorman 2005 23

Sequence Diagrams

© Jason Gorman 2005 24

Sequence Diagrams

public class ClassA
{

private ClassB b = new C lassB();

public void methodA()
{

b.methodB();
}

}

public class ClassA
{

private ClassB b = new C lassB();

public void methodA()
{

b.methodB();
}

}

public class ClassB
{

private ClassC c = new ClassC();

public void methodB()
{

int result = c.methodC(1);
}

}

public class ClassB
{

private ClassC c = new ClassC();

public void methodB()
{

int result = c.methodC(1);
}

}

public class ClassC
{

public int methodC(int argument)
{

return argument * 2;
}

}

public class ClassC
{

public int methodC(int argument)
{

return argument * 2;
}

}

© Jason Gorman 2005 25

Messages, Timelines &
Assignments

: ClassA b : ClassB c : ClassC

MethodB()
result := MethodC(1)

Object with
identity c of type
ClassC

Focus of control

Message from b to c (b calls a
method on c) with argument = 1.
Return value is assigned to variable
result.

Timeline
denotes lifetime of an
object

Flow of time

© Jason Gorman 2005 26

Object Creation & Destruction (Garbage
Collection)

public class ClassA
{

public void methodA()
{

ClassB b = new ClassB();
b.methodB();

}
}

public class ClassA
{

public void methodA()
{

ClassB b = new ClassB();
b.methodB();

}
}

public class ClassB
{

private ClassC c = new ClassC(2);

public void methodB()
{

int result = c.methodC(1);
}

}

public class ClassB
{

private ClassC c = new ClassC(2);

public void methodB()
{

int result = c.methodC(1);
}

}

public class ClassC
{

private int factor = 0;
public ClassC(int factor)
{

this.factor = factor;
}
public int methodC(int argument)
{

return argument * factor;
}

}

public class ClassC
{

private int factor = 0;
public ClassC(int factor)
{

this.factor = factor;
}
public int methodC(int argument)
{

return argument * factor;
}

}

© Jason Gorman 2005 27

Object Creation & Destruction
(Garbage Collection)

: ClassA

b : ClassB

c : ClassC

methodB()
result := methodC(1)

b is created

b is released for garbage-collection

ClassC(2)

c is created
with constructor<<create>>

© Jason Gorman 2005 28

Using Collections and Iterating in Java

public class ClassA
{

private ClassB[] classBs = new ClassB[] {new ClassB(), new ClassB(), new ClassB()};

public void methodA()
{

for(int i = 0; i < classBs.length; i++)
{

ClassB b = classBs[i];
b.methodB();

}
}

}

public class ClassA
{

private ClassB[] classBs = new ClassB[] {new ClassB(), new ClassB(), new ClassB()};

public void methodA()
{

for(int i = 0; i < classBs.length; i++)
{

ClassB b = classBs[i];
b.methodB();

}
}

}

iteration

collection of ClassB

© Jason Gorman 2005 29

classBs : ClassBclassBs : ClassB

Using Collections and Iterating in
Sequence Diagrams

: ClassA classBs : ClassB b : ClassB

b := [i]
methodB()

*[for i = 0 to classBs.length – 1]

collection of ClassB

iteration

© Jason Gorman 2005 30

Conditional Messages in Java
public void methodA()
{

for(int i = 0; i < classBs.length; i++)
{

ClassB b = classBs[i];

if(b.Amount > 25)
{

b.methodB();
}

}
}

public void methodA()
{

for(int i = 0; i < classBs.length; i++)
{

ClassB b = classBs[i];

if(b.Amount > 25)
{

b.methodB();
}

}
}

© Jason Gorman 2005 31

Conditional Messages in
Sequence Diagrams

classBs : ClassBclassBs : ClassB: ClassA classBs : ClassB b : ClassB

b := [i]
[b.Amount > 25] methodB()

*[for i = 0 to classBs.length – 1]

condition

© Jason Gorman 2005 32

Calling static methods in Java

public class ClassA
{

private ArrayList classBs = new ArrayList();

public void methodA()
{

ClassB b = ClassB.createClassB(10);
classBs.add(b);

}
}

public class ClassA
{

private ArrayList classBs = new ArrayList();

public void methodA()
{

ClassB b = ClassB.createClassB(10);
classBs.add(b);

}
}

static method on ClassB

© Jason Gorman 2005 33

Using Class Operations in
Sequence Diagrams

: ClassA ClassB

b : ClassB

b := createClassB(10)

classBs : ArrayList

ClassB(amount)

add(b)

class (not and instance of that type)

© Jason Gorman 2005 34

Recursive method calls in Java

public class ClassA
{

public void methodA()
{

this.privateMethodA();
}

private void privateMethodA()
{
}

}

public class ClassA
{

public void methodA()
{

this.privateMethodA();
}

private void privateMethodA()
{
}

}

© Jason Gorman 2005 35

Recursive Messages on
Sequence Diagrams

: ClassA

privateMethodA()

© Jason Gorman 2005 36

Model-View-Controller in Swing

public class InvoiceDialog extends javax.swing.JDialog {
private JButton addItemButton;
… usual Swing stuff
protected void addItemButtonMouseClicked(MouseEvent evt){

InvoiceItem newItem = new InvoiceItem();
// etc etc

}
}

public class InvoiceDialog extends javax.swing.JDialog {
private JButton addItemButton;
… usual Swing stuff
protected void addItemButtonMouseClicked(MouseEvent evt){

InvoiceItem newItem = new InvoiceItem();
// etc etc

}
}

page controller

boundary object

entity object

© Jason Gorman 2005 37

Using Stereotypes Icons

: User /addItemButton : JButton : InvoiceDialog

doClick()
addItemButtonMouseClicked(evt)

newItem : InvoiceItem

<<create>>

© Jason Gorman 2005 38

Object Diagrams, Snapshots
& Filmstrips

© Jason Gorman 2005 39

Breakpoints Pause Execution At
A Specific Point In Time

© Jason Gorman 2005 40

Breakpoints Represent A Slice
in The Timeline

: User /addItemButton : JButton : InvoiceDialog

PerformClick()
addItemButtonMouseClicked(evt)

/invoice : Invoice

breakpoint

newItem := AddItem()

© Jason Gorman 2005 41

Snapshots Show System State At Some Point
During Execution of A Scenario

: InvoiceDialog
: JButton

: Invoiceinvoice

addItemButton

© Jason Gorman 2005 42

We can use pairs of snapshots to show how
operations change system state

: User /addItemButton : JButton : InvoiceDialog

doClick()
addItemButtonMouseClicked(evt)

/invoice : Invoice

Before calling AddItem()

newItem := AddItem()

After calling AddItem()

© Jason Gorman 2005 43

Filmstrips
: InvoiceDialog

: JButton

: Invoiceinvoice

addItemButton

: InvoiceDialog
: JButton

: Invoiceinvoice

addItemButton

: InvoiceItemitems

Before calling
AddItem()

After calling
AddItem()

Effect #1 :
InvoiceItem object
created

Effect #2 :
InvoiceItem object
inserted into items collection

© Jason Gorman 2005 44

UML for Java Developers

Class Diagrams

© Jason Gorman 2005 45

Classes

Account class Account
{
}

class Account
{
}

© Jason Gorman 2005 46

Attributes

Account

class Account
{

private float balance = 0;
private float limit;

}

class Account
{

private float balance = 0;
private float limit;

}- balance : Single = 0
- limit : Single

[visibility] [/] attribute_name[multiplicity] [: type [= default_value]]

© Jason Gorman 2005 47

Operations
Account

class Account
{

private float balance = 0;
private float limit;
public void deposit(float amount)
{

balance = balance + amount;
}

public void withdraw(float amount)
{

balance = balance - amount;
}

}

class Account
{

private float balance = 0;
private float limit;
public void deposit(float amount)
{

balance = balance + amount;
}

public void withdraw(float amount)
{

balance = balance - amount;
}

}

- balance : Single = 0
- limit : Single
+ deposit(amount : Single)
+ withdraw(amount : Single)

[visibility] op_name([[in|out] parameter : type[, more params]])[: return_type]

© Jason Gorman 2005 48

Visibility

Account
- balance : float = 0
+ limit : float
id : int
~ databaseId : int
+ deposit(amount : single)
-withdraw(amount : single)
getAvailableFunds() : single
~ getDatabaseId() : int

+ = public
- = private
= protected
~ = package

class Account
{

private float balance = 0;
public float limit;
protected int id;
int databaseId;

public void deposit(float amount)
{

balance = balance + amount;
}

private void withdraw(float amount)
{

balance = balance - amount;
}

protected int getId()
{

return id;
}

int getDatabaseId()
{

return databaseId;
}

}

class Account
{

private float balance = 0;
public float limit;
protected int id;
int databaseId;

public void deposit(float amount)
{

balance = balance + amount;
}

private void withdraw(float amount)
{

balance = balance - amount;
}

protected int getId()
{

return id;
}

int getDatabaseId()
{

return databaseId;
}

}

© Jason Gorman 2005 49

Class &
Instance Scope

Person
- numberOfPeople : int
- name : string
+ createPerson(name : string) : Person
+ getName() : string
+ getNumberOfPeople() : int
- Person(name : string)

class Person
{

private static int numberOfPeople = 0;
private String name;

private Person(string name)
{

this.name = name;
numberOfPeople++;

}

public static Person createPerson(string name)
{

return new Person(name);
}

public string getName()
{

return this.name;
}

public static int getNumberOfPeople()
{

return numberOfPeople;
}

}

class Person
{

private static int numberOfPeople = 0;
private String name;

private Person(string name)
{

this.name = name;
numberOfPeople++;

}

public static Person createPerson(string name)
{

return new Person(name);
}

public string getName()
{

return this.name;
}

public static int getNumberOfPeople()
{

return numberOfPeople;
}

}

int noOfPeople = Person.getNumberOfPeople();
Person p = Person.createPerson("Jason Gorman");

int noOfPeople = Person.getNumberOfPeople();
Person p = Person.createPerson("Jason Gorman");

© Jason Gorman 2005 50

Associations

A B1
b

multiplicity

role name

A
b : B

Equivalent to

class A
{

public B b = new B();
}

class B
{
}

class A
{

public B b = new B();
}

class B
{
}

A a = new A();
B b = a.b;

A a = new A();
B b = a.b;

1

© Jason Gorman 2005 51

Bi-directional Associations
A

b : B

Equivalent to

class A
{

public B b;
public A()
{

b = new B(this);
}

}

class B
{

public A a;
public B(A a)
{

this.a = a;
}

}

class A
{

public B b;
public A()
{

b = new B(this);
}

}

class B
{

public A a;
public B(A a)
{

this.a = a;
}

}

A a = new A();
B b = a.b;
A a1 = b.a;
assert a == a1;

A a = new A();
B b = a.b;
A a1 = b.a;
assert a == a1;

B
a : A

A B
1

b

multiplicity

role name
a

1

© Jason Gorman 2005 52

Association names & role
defaults

Person Address
Lives at

Default role name = address
Default multiplicity = 1

class Person
{

// association: Lives at
public Address address;

public Person(Address address)
{

this.address = address;
}

}

class Person
{

// association: Lives at
public Address address;

public Person(Address address)
{

this.address = address;
}

}

© Jason Gorman 2005 53

Multiplicity & Collections

Customer Account1..*
accounts

class Customer
{

// accounts[1..*] : Account
ArrayList accounts = new ArrayList();

public Customer()
{

Account defaultAccount = new Account();
accounts.add(defaultAccount);

}
}

class Customer
{

// accounts[1..*] : Account
ArrayList accounts = new ArrayList();

public Customer()
{

Account defaultAccount = new Account();
accounts.add(defaultAccount);

}
}

Customer
accounts[1..*] : Account

Equivalent to

1..2

© Jason Gorman 2005 54

Aggregation & Composition

Computer HardwareDevice
1..*

Aggregation – is made up of objects that can be shared or exchanged

ShoppingBasket OrderItem
1..*

Composition – is composed of objects that cannot be shared or exchanged
and live only as long as the composite object

0..1

1

© Jason Gorman 2005 55

Generalization
Person

Employee

class Person
{
}

class Employee extends Person
{
}

class Person
{
}

class Employee extends Person
{
}

© Jason Gorman 2005 56

Realization
<<interface>>

Person

Employee Employee

Person

OR

interface Person
{
}

class Employee implements Person
{
}

interface Person
{
}

class Employee implements Person
{
}

© Jason Gorman 2005 57

Overriding
Operations

Account

+ deposit(amount : float)
+ withdraw(amount : float)

SettlementAccount

+ withdraw(amount : float)

-debt : float = 0
/ availableFunds : float = balance + limit - debt

balance : float = 0
limit : float = 0

class Account
{

protected float balance = 0;
protected float limit = 0;
public void deposit(float amount)
{

balance = balance + amount;
}
public void withdraw(float amount)
{

balance = balance - amount;
}

}
class SettlementAccount extends Account
{

private float debt = 0;
float availableFunds()
{

return (balance + limit - debt);
}
public void withdraw(float amount) throws InsufficientFundsException
{

if (amount > this.availableFunds())
{

throw new InsufficientFundsException();
}
base.withdraw(amount);

}
}

class Account
{

protected float balance = 0;
protected float limit = 0;
public void deposit(float amount)
{

balance = balance + amount;
}
public void withdraw(float amount)
{

balance = balance - amount;
}

}
class SettlementAccount extends Account
{

private float debt = 0;
float availableFunds()
{

return (balance + limit - debt);
}
public void withdraw(float amount) throws InsufficientFundsException
{

if (amount > this.availableFunds())
{

throw new InsufficientFundsException();
}
base.withdraw(amount);

}
}

© Jason Gorman 2005 58

Abstract Classes &
Abstract Operations

Account
+ deposit(amount : float)
+ withdraw(amount : float)

SettlementAccount

+ deposit(amount : float)
+ withdraw(amount : float)

- balance : float = 0
- limit : float = 0
- debt : float = 0
/ availableFunds : float = balance + limit - debt

abstract class Account
{

public abstract void deposit(float amount);
public abstract void withdraw(float amount);

}

class SettlementAccount extends Account
{

private float balance = 0;
private float limit = 0;
private float debt = 0;
float availableFunds()
{

return (balance + limit - debt);
}
public void deposit(float amount)
{

balance = balance + amount;
}
public void withdraw(float amount)
{

if (amount > this.availableFunds())
{

throw new
InsufficientFundsException();
}
balance = balance - amount;
}

}

abstract class Account
{

public abstract void deposit(float amount);
public abstract void withdraw(float amount);

}

class SettlementAccount extends Account
{

private float balance = 0;
private float limit = 0;
private float debt = 0;
float availableFunds()
{

return (balance + limit - debt);
}
public void deposit(float amount)
{

balance = balance + amount;
}
public void withdraw(float amount)
{

if (amount > this.availableFunds())
{

throw new
InsufficientFundsException();
}
balance = balance - amount;
}

}

© Jason Gorman 2005 59

More on Generalization
A

DCB

A

DCB

Equivalent to

{abstract}
Mammal

BirdCatHuman

Mammal

BirdCatHuman

Equivalent to

© Jason Gorman 2005 60

Dependencies – C#

Account

InsufficientFundsException

+ withdraw(amount : float)

public class Account {

public void withdraw(float amount) throws InsufficientFundsException
{

}
}

public class Account {

public void withdraw(float amount) throws InsufficientFundsException
{

}
}

© Jason Gorman 2005 61

Qualified Associations

Library Title

0..*
0..1

ISBN

0..*

item
0..*

class Library
{

private HashMap titles = new HashMap();

public Title item(String isbn)
{

return (Tit le)titles.get(isbn);
}

}

class Library
{

private HashMap titles = new HashMap();

public Title item(String isbn)
{

return (Tit le)titles.get(isbn);
}

}

© Jason Gorman 2005 62

Association
Classes

Customer Video

Rental
dateRented : DateTime

0..1 0..*

class Customer
{

ArrayList rentals = new ArrayList();
}
class Video
{

Rental rental;
}
class Rental
{

Customer customer;
Video video;

DateTime dateRented;

public Rental(DateTime dateRented, Customer customer, Video
video)

{
this.dateRented = dateRented;
video.rental = this;
customer.rentals.add(this);
this.customer = customer;
this.video = video;

}
}

class Customer
{

ArrayList rentals = new ArrayList();
}
class Video
{

Rental rental;
}
class Rental
{

Customer customer;
Video video;

DateTime dateRented;

public Rental(DateTime dateRented, Customer customer, Video
video)

{
this.dateRented = dateRented;
video.rental = this;
customer.rentals.add(this);
this.customer = customer;
this.video = video;

}
}

+ Rental(DateTime, Customer, Video)

© Jason Gorman 2005 63

Associations, Visibility & Scope

Library Title
0..*0..*

- titles

class Library
{

private Title[] t it les;

}

class Library
{

private Title[] t it les;

}

Team Person
2..*

members

class Team
{

protected Person[] members;
}

class Team
{

protected Person[] members;
}

Customer
0..*
- allInstances

class Customer
{

private static Customer[] allInstances;
}

class Customer
{

private static Customer[] allInstances;
}

© Jason Gorman 2005 64

Information Hiding – Wrong!

Person
name : string parents

0..2

children0..*

class Person
{

public String name;

public Parent[] parents = new Parent[2];

public ArrayList children = new ArrayList();

}

class Person
{

public String name;

public Parent[] parents = new Parent[2];

public ArrayList children = new ArrayList();

}

Person mary = new Person();
Person ken = new Person();
Person jason = new Person();
jason.parents[0] = mary;
jason.parents[1] = ken;
mary.children.add(jason);
ken.children.add(jason);
jason.name = "Jason";

Person mary = new Person();
Person ken = new Person();
Person jason = new Person();
jason.parents[0] = mary;
jason.parents[1] = ken;
mary.children.add(jason);
ken.children.add(jason);
jason.name = "Jason";

© Jason Gorman 2005 65

Information – Right!

Person
- name : string - parents

0..2

- children 0..*

Person mary = new Person();
Person ken = new Person();
Person jason = new Person(mary, ken);

jason.setName("Jason");

Person mary = new Person();
Person ken = new Person();
Person jason = new Person(mary, ken);

jason.setName("Jason");

class Person
{

private String name;
private Parent[] parents = new Parent[2];
private ArrayList children = new ArrayList();

public Person(Person mother, Person father)
{

this.setParent(0, mother);
this.setParent(1, father);

}
public void setName(String value)
{

this.name = value;
}
public void setParent(int index, Person parent)
{

parents[index] = parent;
parent.addChild(this);

}
public void addChild(Person child)
{

this.children.add(child);
}
public Person()
{
}

}

class Person
{

private String name;
private Parent[] parents = new Parent[2];
private ArrayList children = new ArrayList();

public Person(Person mother, Person father)
{

this.setParent(0, mother);
this.setParent(1, father);

}
public void setName(String value)
{

this.name = value;
}
public void setParent(int index, Person parent)
{

parents[index] = parent;
parent.addChild(this);

}
public void addChild(Person child)
{

this.children.add(child);
}
public Person()
{
}

}

+ Person(mother : Person, father : Person)
+ Person()
+ setName(value :string)
+ setParent(index : int, parent : Person)
+ addChild(child : Person)

© Jason Gorman 2005 66

UML for .NET Developers
State Transition Diagrams

Jason Gorman

© Jason Gorman 2005 67

State Transition Diagram - Basics
public class JobApplication
{

public static f inal int EDITING = 0;
public static f inal int SUBMITTED = 1;
public static f inal int ACCEPTED = 2;
public static f inal int REJECTED = 3;

private int status = JobApplication.EDITING;

public void submit()
{

status = JobApplication.SUBMITTED;
}

public void accept()
{

status = JobApplication.ACCEPTED;
}

public void reject()
{

status = JobApplication.REJECTED;
}

public int getStatus()
{

return status;
}

}

public class JobApplication
{

public static f inal int EDITING = 0;
public static f inal int SUBMITTED = 1;
public static f inal int ACCEPTED = 2;
public static f inal int REJECTED = 3;

private int status = JobApplication.EDITING;

public void submit()
{

status = JobApplication.SUBMITTED;
}

public void accept()
{

status = JobApplication.ACCEPTED;
}

public void reject()
{

status = JobApplication.REJECTED;
}

public int getStatus()
{

return status;
}

}

Editing

Submitted

Accepted Rejected

submit()

accept() reject()

start state

end state

state

transition

event

default state

© Jason Gorman 2005 68

State Transition Diagram - Intermediate
public class JobApplication
{

public static final int EDITING = 0;
public static final int SUBMITTED = 1;
public static final int ACCEPTED = 2;
public static final int REJECTED = 3;

priv ate int status = JobApplication.EDITING;

priv ate Applicant applicant;

public JobApplication(Applicant applicant)
{

this.applicant = applicant;
}

public void submit()
{

if (applicant!= null)
{

status = JobApplication.SUBMITTED;
}

}

public void accept()
{

status = JobApplication.ACCEPTED;
applicant.sendNotification(this);

}

public void Reject()
{

status = JobApplication.REJECTED;
}

public int getStatus()
{

return status;
}

}

public class JobApplication
{

public static final int EDITING = 0;
public static final int SUBMITTED = 1;
public static final int ACCEPTED = 2;
public static final int REJECTED = 3;

priv ate int status = JobApplication.EDITING;

priv ate Applicant applicant;

public JobApplication(Applicant applicant)
{

this.applicant = applicant;
}

public void submit()
{

if (applicant!= null)
{

status = JobApplication.SUBMITTED;
}

}

public void accept()
{

status = JobApplication.ACCEPTED;
applicant.sendNotification(this);

}

public void Reject()
{

status = JobApplication.REJECTED;
}

public int getStatus()
{

return status;
}

}

Editing

Submitted

Accepted Rejected

submit() [applicant != null]

accept()
/ ^applicant.sendNotif ication(this)

reject()

submit() [applicant == null]

guard

action

© Jason Gorman 2005 69

Actions - Alternative

Editing

Submitted

Accepted
Rejected

Submit() [applicant != null]

Accept() Reject()

Submit() [applicant == null]

do/ ^applicant.SendNotif ication(this)

 ̂denotes an event
triggered on another object

public class JobApplication
{

public static final int EDITING = 0;
public static final int SUBMITTED = 1;
public static final int ACCEPTED = 2;
public static final int REJECTED = 3;

priv ate int status = JobApplication.EDITING;

priv ate Applicant applicant;

public JobApplication(Applicant applicant)
{

this.applicant = applicant;
}

public void submit()
{

if (applicant!= null)
{

status = JobApplication.SUBMITTED;
}

}

public void accept()
{

status = JobApplication.ACCEPTED;
applicant.sendNotification(this);

}

public void Reject()
{

status = JobApplication.REJECTED;
}

public int getStatus()
{

return status;
}

}

public class JobApplication
{

public static final int EDITING = 0;
public static final int SUBMITTED = 1;
public static final int ACCEPTED = 2;
public static final int REJECTED = 3;

priv ate int status = JobApplication.EDITING;

priv ate Applicant applicant;

public JobApplication(Applicant applicant)
{

this.applicant = applicant;
}

public void submit()
{

if (applicant!= null)
{

status = JobApplication.SUBMITTED;
}

}

public void accept()
{

status = JobApplication.ACCEPTED;
applicant.sendNotification(this);

}

public void Reject()
{

status = JobApplication.REJECTED;
}

public int getStatus()
{

return status;
}

}

© Jason Gorman 2005 70

Active

State Transition Diagrams – Advanced
public class JobApplication
{

// declare status variable and enums

…

private bool active;
private Applicant applicant;

public JobApplication(Applicant applicant)
{

this.applicant = applicant;
active = true;

}

….

public void suspend()
{

active = false;
}

public void reactivate()
{

active = true;
}

public bool isActive()
{

return active;
}

public bool isSuspended()
{

return !active;
}

}

public class JobApplication
{

// declare status variable and enums

…

private bool active;
private Applicant applicant;

public JobApplication(Applicant applicant)
{

this.applicant = applicant;
active = true;

}

….

public void suspend()
{

active = false;
}

public void reactivate()
{

active = true;
}

public bool isActive()
{

return active;
}

public bool isSuspended()
{

return !active;
}

}

Editing

Submitted

Accepted Rejected

submit() [applicant != null]

accept()
/ âpplicant.sendNotification(this)

reject()

submit() [applicant == null]

H

Suspended

suspend()

reactivate()

history
state
- “remembers” what
sub-state it was in on
re-entering Active

super state

sub state

© Jason Gorman 2005 71

Java Activity Diagrams

Jason Gorman

© Jason Gorman 2005 72

Activity Diagrams Model Process Flow

int i = 5;
int j = 2;
int k = i * j;

for(int n = 1; n < k + 1; n++)
{

System.out.println("Iteration #" + n);
}

try
{

int read = System.in.read();
}
catch(IOException e)
{

System.err.println(e.getMessage());
}

int i = 5;
int j = 2;
int k = i * j;

for(int n = 1; n < k + 1; n++)
{

System.out.println("Iteration #" + n);
}

try
{

int read = System.in.read();
}
catch(IOException e)
{

System.err.println(e.getMessage());
}

int i = 5

int j = 2

int k = i * j

int n = 1

System.out.println("Iteration #" + n)

[n < k + 1]

n++

int read = System.in.read()

[else]

awaiting key-press

key pressed

start state

action

transition

guard
condition

branch
waiting state

event
end state

System.err.println(e.getMessage())

IOException e

© Jason Gorman 2005 73

Concurrency, Events & Synchronisation
public class EventExample implements Runnable {

private static SomeEventListener listener;
private static SomeEventDispatcher dispatcher;

public static void main(String[] args) {

dispatcher = new SomeEventDispatcher();
listener = new SomeEventListenerImpl();
dispatcher.addSomeEventListener(listener);

EventExample example = new EventExample();
Thread thread = new Thread(example);
thread.start();

while (!listener.getEventDispatched())
{

System.out.println("waiting...");
}

}

public void run() {

for(int i = 1; i < 10000; i++)
{
}

dispatcher.fireSomeEvent();
}

}

public class SomeEventListenerImpl implements SomeEventListener {

private boolean eventDispatched = false ;

public void dispatchSomeEvent(SomeEvent e) {
eventDispatched = true ;

}

public boolean getEventDispatched() {
return eventDispatched;

}
}

public class SomeEventDispatcher {

private List listeners = new ArrayList();

public void addSomeEventListener(SomeEventListener listener)
{

listeners.add(listener);
}

public void fireSomeEvent()
{

for(int i = 0;i < listeners.size();i++)
{
SomeEventListener listener = (SomeEventListener)listeners.get(i);
listener.dispatchSomeEvent(new SomeEvent());
}

}
}

© Jason Gorman 2005 74

Concurrency, Forks, Joins & Signals in Activity
Diagrams

thread.start()

System.out.println("waiting...")

[!listener.getEventDispatched()]

[else]

int i =1

i++
[i < 10000]

dispatcher.fireSomeEvent()

eventDispatched = true

fork

join

signal sent

signal received

synchronisation bar
[else]

dispatcher = new SomeEventDispatcher();
listener = new SomeEventListenerImpl();
dispatcher.addSomeEventListener(listener);

EventExample example = new EventExample();
Thread thread = new Thread(example);

[!listener.getEventDispatched()]

dispatchSomeEvent(e)

© Jason Gorman 2005 75

Objects & Responsibilities in Java
public class ClassA
{

private ClassB b = new ClassB();

public void methodA()
{

int i = 1;
int j = 2;
int k = i + j;

int n = b.methodB(k);

System.out.println(n.toString());
}

}

public class ClassA
{

private ClassB b = new ClassB();

public void methodA()
{

int i = 1;
int j = 2;
int k = i + j;

int n = b.methodB(k);

System.out.println(n.toString());
}

}

public class ClassB
{

private ClassC c = new ClassC();

public int methodB(int k)
{

int b = k * k;

return c.methodC(b);
}

}

public class ClassC
{

public int methodC(int b)
{

return b - 1;
}

}

public class ClassB
{

private ClassC c = new ClassC();

public int methodB(int k)
{

int b = k * k;

return c.methodC(b);
}

}

public class ClassC
{

public int methodC(int b)
{

return b - 1;
}

}

© Jason Gorman 2005 76

Swim-lanes

int i =1

int j = 2

int k = i + j

int n = b.methodB(k)

int b = k * k

return c.methodC(b)

return b - 1

System.out.println(n.toString())

: ClassA b : ClassB c : ClassC

© Jason Gorman 2005 77

UML for Java Developers
Implementation Diagrams, Packages &

Model Management
Jason Gorman

© Jason Gorman 2005 78

Components Are Physical Files

Customer.class

Invoice.class

Order.class
DomainLayer.jar

Order

Customer

Invoice

*

1

1..*
1

*

1

© Jason Gorman 2005 79

WebApp.zip

DomainLayer.jar

Components Can Contain
Components

Customer.classs

Invoice.class Order.class
DataLayer.jar

© Jason Gorman 2005 80

Instances of Components Can be
Deployed

Application Server

: BusinessLayer.ear

Web Server

: ProcessLayer.war

<<RMI>>

deployment node
communication
channel

© Jason Gorman 2005 81

Packages in Java & UML
package objectmonkey;

class ClassA
{
}

package objectmonkey.examples;

class ClassB
{
}

package moreexamples;

import objectmonkey.examples.*;

class ClassA
{

private ClassB b;
}

package objectmonkey;

class ClassA
{
}

package objectmonkey.examples;

class ClassB
{
}

package moreexamples;

import objectmonkey.examples.*;

class ClassA
{

private ClassB b;
}

objectmonkey

examples

moreexamples

ClassA

ClassB

ClassA

b 0..1

Full Path = moreexamples::ClassA

© Jason Gorman 2005 82

UmlForJava

Packages & Folders
packages

subpackage

.classpath

.project

ClassA.java

ClassB.java

© Jason Gorman 2005 83

Extending UML

© Jason Gorman 2005 84

Extending UML
UML for Managers |
Introducing UML

<<Http Servlet>>
SubmissionsController
{ precompile = true }

displayAuthorDetails(authorId : int)
doGet(request : HttpRequest, response : HttpResponse)

stereotype

tagged value

Book

{ author->forAll(p : Person | publisher.employee->includes(person)) }

constraint

© Jason Gorman 2005 85

UML for Java Developers
Model Constraints & The Object

Constraint Language
Jason Gorman

© Jason Gorman 2005 86

UML Diagrams Don’t Tell Us
Everything

Person
children
*

parents 0..2
Bill : Person

children

parents
parents

children

valid instance of

© Jason Gorman 2005 87

Constraints Make Models More
Precise

Person
children
*

parents 0..2
Bill : Person

children

parents
parents

children

not a valid instance of

{cannot be own descendant or
ancestor }

© Jason Gorman 2005 88

What is the Object Constraint
Language?

• A language for expressing necessary extra
information about a model

• A precise and unambiguous language that
can be read and understood by
developers and customers

• A language that is purely declarative – ie,
it has no side-effects (in other words it
describes what rather than how)

© Jason Gorman 2005 89

What is an OCL Constraint?
• An OCL constraint is an OCL expression

that evaluates to true or false (a Boolean
OCL expression, in other words)

© Jason Gorman 2005 90

OCL Makes Constraints
Unambiguous

Person
children
*

parents 0..2

*
*

{ancestors->excludes(self) and descendants->excludes(self) }

/family tree

{ancestors = parents->union(parents.ancestors->asSet())}
{descendants = children->union(children.descendants->asSet())

ancestors

descendants

© Jason Gorman 2005 91

Introducing OCL – Constraints
& Contexts

Person
children
*

parents 0..2

*
*

{ancestors->excludes(self) and descendants->excludes(self) }

/family tree

{ancestors = parents->union(parents.ancestors->asSet())}
{descendants = children->union(children.descendants->asSet())

ancestors

descendants

context Person
inv: ancestors->excludes(self) and descendants->excludes(self)

context Person
inv: ancestors->excludes(self) and descendants->excludes(self)

Q: To what which type this constraint apply?
A: Person

Q: When does this constraint apply?
A: inv = invariant = always

© Jason Gorman 2005 92

Operations, Pre & Post-
conditions

Person

marry(p : Person)
sex : Sex

spouse
0..1

context Person::marry(p : Person)
pre cannot_marry_self: not (p = self)
pre not_same_sex: not (p.sex = self.sex)
-- neither person can be married already
pre not_already_married: self.spouse->size() = 0 and p.spouse->size() = 0
post : self.spouse = p and p.spouse = self

context Person::marry(p : Person)
pre cannot_marry_self: not (p = self)
pre not_same_sex: not (p.sex = self.sex)
-- neither person can be married already
pre not_already_married: self.spouse->size() = 0 and p.spouse->size() = 0
post : self.spouse = p and p.spouse = self

optional constraint name

applies to the marry() operation of the type Person

comments start with --

<<enumeration>>
Sex

MALE = 1
FEMALE = 2

© Jason Gorman 2005 93

Design By Contract :assert
class Sex
{

static final int MALE = 1;
static final int FEMALE = 2;

}

class Person
{

public int sex;
public Person spouse;

public void marry(Person p)
{

assert p != this;
assert p.sex != this.sex;
assert this.spouse = null && p.spouse = null;

this.spouse = p;
p.spouse = this;

}
}

class Sex
{

static final int MALE = 1;
static final int FEMALE = 2;

}

class Person
{

public int sex;
public Person spouse;

public void marry(Person p)
{

assert p != this;
assert p.sex != this.sex;
assert this.spouse = null && p.spouse = null;

this.spouse = p;
p.spouse = this;

}
}

self

self.spouse->size = 0

context Person::marry(p : Person)
pre cannot_marry_self: not (p = self)
pre not_same_sex: not (p.sex = self.sex)
-- neither person can be married a lready
pre not_already_married: self.spouse->size() = 0 and p.spouse->size() = 0
post : self.spouse = p and p.spouse = self

context Person::marry(p : Person)
pre cannot_marry_self: not (p = self)
pre not_same_sex: not (p.sex = self.sex)
-- neither person can be married a lready
pre not_already_married: self.spouse->size() = 0 and p.spouse->size() = 0
post : self.spouse = p and p.spouse = self

© Jason Gorman 2005 94

Defensive Programming : Throwing
Exceptions

class Person
{

public int sex;
public Person spouse;

public void marry(Person p) throws ArgumentException {
if(p == this) {

throw new ArgumentException("cannot marry self");
}
if(p.sex == this.sex) {

throw new ArgumentException("spouse is same sex");
}
if((p.spouse != null || this.spouse != null) {

throw new ArgumentException("already married");
}

this.spouse = p;
p.spouse = this;

}
}

class Person
{

public int sex;
public Person spouse;

public void marry(Person p) throws ArgumentException {
if(p == this) {

throw new ArgumentException("cannot marry self");
}
if(p.sex == this.sex) {

throw new ArgumentException("spouse is same sex");
}
if((p.spouse != null || this.spouse != null) {

throw new ArgumentException("already married");
}

this.spouse = p;
p.spouse = this;

}
}

© Jason Gorman 2005 95

Referring to previous values and
operation return values

Account

deposit(amount : Real)
withdraw(amount : Real)
getBalance() : Real

balance : Real = 0

context Account::withdraw (amount : Real)
pre: amount <= balance
post: balance = balance@pre - amount
context Account::getBalance() : Real
post : result = balance

context Account::withdraw (amount : Real)
pre: amount <= balance
post: balance = balance@pre - amount
context Account::getBalance() : Real
post : result = balance

balance before execution of operation

return value of operation

© Jason Gorman 2005 96

@pre and result in Java

context Account::withdraw(amount : Real)
pre: amount <= balance
post: balance = balance@pre - amount
context Account::getBalance() : Real
post : result = balance

context Account::withdraw(amount : Real)
pre: amount <= balance
post: balance = balance@pre - amount
context Account::getBalance() : Real
post : result = balance

public void testWithdrawWithSufficientFunds() {
Account account = new Account();

account.deposit(500);

float balanceAtPre = account.getBalance();

float amount = 250;

account.withdraw(amount);

assertTrue(account.getBalance() == balanceAtPre – amount);
}

class Account
{

private float balance = 0;

public void withdraw(float amount) {
assert amount <= balance;

balance = balance - amount;
}

public void deposit(float amount) {
balance = balance + amount;

}

public float getBalance() {
return balance;

}
}

class Account
{

private float balance = 0;

public void withdraw(float amount) {
assert amount <= balance;

balance = balance - amount;
}

public void deposit(float amount) {
balance = balance + amount;

}

public float getBalance() {
return balance;

}
}

balance = balance@pre - amount

result = balance

© Jason Gorman 2005 97

OCL Basic Value Types

Account

deposit(amount : Real)
withdraw(amount : Real)

balance : Real = 0
name : String
id : Integer
isActive : Boolean

• Integer : A whole number of any size
• Real : A decimal number of any size
• String : A string of characters
• Boolean : True/False

balance : Real = 0

double balance = 0;
float balance = 0;

id : Integer

int id;
long id;
byte id;
short id;

name : String

string name;
char[] name;

isActive : Boolean

boolean isActive;

© Jason Gorman 2005 98

Operations on Real and Integer Types
Operation Notation Result type
equals a = b Boolean
not equals a <> b Boolean
less a < b Boolean
more a > b Boolean
less or equal a <= b Boolean
more or equal a >= b Boolean
plus a + b Integer or Real
minus a - b Integer or Real
multiply a * b Integer or Real
divide a / b Real
modulus a.mod(b) Integer
integer division a.div(b) Integer
absolute value a.abs Integer or Real
maximum a.max(b) Integer or Real
minimum a.min(b) Integer or Real
round a.round Integer
floor a.floor Integer

Eg, 6.7.floor() = 6

© Jason Gorman 2005 99

Operations on String Type

Operation Expression Result type
concatenation s.concat(string) String
size s.size Integer
to lower case s.toLower String
to upper case s.toUpper String
substring s.substring(int, int) String
equals s1 = s2 Boolean
not equals s1 <> s2 Boolean

Eg, ‘jason’.concat(‘ gorman’) = ‘jason gorman’
Eg, ‘jason’.substring(1, 2) = ‘ja’

© Jason Gorman 2005 100

Operations on Boolean Type
Operation Notation Result type
or a or b Boolean
and a and b Boolean
exclusive or a xor b Boolean
negation not a Boolean
equals a = b Boolean
not equals a <> b Boolean
implication a implies b Boolean
if then else if a then b1 else b2 endif type of b

Eg, true or false = true
Eg, true and false = false

© Jason Gorman 2005 101

Navigating in OCL
Expressions

Account Customer
holder

1*
accounts

In OCL:

account.holder
Evaluates to a customer object who is in the role holder for that association

And:

customer.accounts
Evaluates to a collection of Account objects in the role accounts for that association

Account account = new Account();
Customer customer = new Customer();

customer.accounts = new Account[] {account};
account.holder = customer;

Account account = new Account();
Customer customer = new Customer();

customer.accounts = new Account[] {account};
account.holder = customer;

© Jason Gorman 2005 102

Navigability in OCL Expressions

A B
b
1

a.b is allowed

b.a is not allowed – it is not navigable

class A
{

public B b;
}

class B
{
}

class A
{

public B b;
}

class B
{
}

© Jason Gorman 2005 103

Calling class features

Account
id : Integer
status : enum{active, frozen, closed}
balance : Real
nextId : Integer
deposit(amount : Real)
withdraw(amount : Real)
fetch(id : Integer) : Account

context Account::createNew() : Account
post: result.oclIsNew() and

result.id = Account.nextId@pre and
Account.nextId = result.id + 1

context Account::createNew() : Account
post: result.oclIsNew() and

result.id = Account.nextId@pre and
Account.nextId = result.id + 1

© Jason Gorman 2005 104

Enumerations in OCL

context Account::withdraw(amount : Real)
pre: amount <= balance
pre: status = AccountStatusKind.ACTIVE
post: balance = balance@pre - amount

context Account::withdraw(amount : Real)
pre: amount <= balance
pre: status = AccountStatusKind.ACTIVE
post: balance = balance@pre - amount

Account
balance : Real
deposit(amount : Real)
withdraw(amount : Real)

<<enumeration>>
AccountStatusKind
ACTIVE
FROZEN
CLOSED

1 status

© Jason Gorman 2005 105

Collections in OCL
Account Customer

holder
1*

accounts

customer.accounts.balance = 0 is not allowed

customer.accounts->select(id = 2324).balance = 0 is allowed

balance : Real
id : Integer

© Jason Gorman 2005 106

Collections in
Java

class Account
{

public double balance;
public int id;

}

class Customer
{

Account[] accounts;

public Account SelectAccount(int id)
{

Account selected = null;

for(int i = 0; i < accounts.length; i++)
{

Account account = accounts[i];
if(account.id = id)
{

selected = account;
break;

}
}

return selected;
}

}

class Account
{

public double balance;
public int id;

}

class Customer
{

Account[] accounts;

public Account SelectAccount(int id)
{

Account selected = null;

for(int i = 0; i < accounts.length; i++)
{

Account account = accounts[i];
if(account.id = id)
{

selected = account;
break;

}
}

return selected;
}

}

© Jason Gorman 2005 107

The OCL Collection Hierarchy

Collection

Set Bag Sequence

Elements can be included only
once, and in no specific order

Elements can be included
more than once, in no
specific order

Elements can be included
more than once, but in a
specific order

© Jason Gorman 2005 108

Operations on All Collections
Operation Description
size The number of elements in the collection
count(object) The number of occurences of object in the collection.
includes(object) True if the object is an element of the collection.
includesAll(collection) True if all elements of the parameter collection are present in the current collection.

isEmpty True if the collection contains no elements.
notEmpty True if the collection contains one or more elements.
iterate(expression) Expression is evaluated for every element in the collection.
sum(collection) The addition of all elements in the collection.
exists(expression) True if expression is true for at least one element in the collection.

forAll(expression) True if expression is true for all elements.
select(expression) Returns the subset of elements that satisfy the expression
reject(expression) Returns the subset of elements that do not satisfy the expression

collect(expression) Collects all of the elements given by expression into a new collection

one(expression) Returns true if exactly one element satisfies the expression

sortedBy(expression) Returns a Sequence of all the elements in the collection in the order specified (expression must
contain the < operator

© Jason Gorman 2005 109

Examples of Collection Operations

jason : Customer

account1 : Account

account3 : Account

id = 2543
balance = 450

id = 4288
balance = 250

account2 : Account
id = 4569
balance = 100

account4 : Account
id = 5613
balance = 50

jason.accounts->forAll(a : Account | a.balance > 0) = true
jason.accounts->select(balance > 100) = {account1, account3}
jason.accounts->includes(account4) = true
jason.accounts->exists(a : account | a.id = 333) = false
jason.accounts->includesAll({account1, account2}) = true
jason.accounts.balance->sum() = 850
Jason.accounts->collect(balance) = {450, 100, 250, 50}

bool forAll = true;
foreach(Account a in accounts)
{

if(!(a.balance > 0))
{

forAll = forAll && (a.balance > 0);
}

}

bool forAll = true;
foreach(Account a in accounts)
{

if(!(a.balance > 0))
{

forAll = forAll && (a.balance > 0);
}

}

accounts

accounts
accounts

accounts

holder

holder

holder

© Jason Gorman 2005 110

Navigating Across & Flattening Collections

jason : Customer

account1 : Account

account3 : Account

id = 2543
balance = 450

id = 4288
balance = 250

account2 : Account
id = 4569
balance = 100

account4 : Account
id = 5613
balance = 50

accounts

accounts

accounts

accounts

holder

holder

holder

antony : Customer

tsb : Bank

customers

customers

tsb.customers.accounts = {account1, account2, account3, account}
tsb.customers.accounts.balance = {450, 100, 250, 50}

© Jason Gorman 2005 111

Specialized Collection Operations
Collection

Set Bag Sequence
minus(Set) : Set
union(Set) : Set
union(Bag) : Bag
symettricDifference(Set) : Set
intersection(Set) : Set
intersection(Bag) : Set
including(OclAny) : Set
excluding(OclAny) : Set
asBag() : Bag
asSequence() : Sequence

union(Bag) : bag
union(Set) : bag
intersection(Set) : Set
intersection(Bag) : Bag
including(OclAny) : Bag
excluding(OclAny) : Bag
asSet() : Set
asSequence() : Sequence

first() : OclAny
last() : OclAny
at(Integer) : OclAny
append(OclAny)
prepend(OclAny)
including(OclAny) : Sequence
excluding(OclAny) : Sequence
asBag() : Bag
asSet() : Set

Eg, Set{4, 2, 3, 1}.minus(Set{2, 3}) = Set{4, 1}
Eg, Bag{1, 2, 3, 5}.including(6) = Bag{1, 2, 3, 5, 6}
Eg, Sequence{1, 2, 3, 4}.append(5) = Sequence{1, 2, 3, 4, 5}

© Jason Gorman 2005 112

Navigating across Qualified
Associations

Account Customer
holder

10..1
account

balance : Real
id : Integer

id

customer.account[3435]
Or

customer.account[id = 3435]

© Jason Gorman 2005 113

Navigating to Association
Classes

A B

C

context A inv: self.c
context B inv: self.c

A
Cx

y

context A inv: self.c[x]
context A inv: self.c[y]

© Jason Gorman 2005 114

Equivalents to Association
Classes

A BC

A

C

x

y

c

c

c c

© Jason Gorman 2005 115

Built-in OCL Types : OclType

Account Customer
holder

1*
accounts

balance : Real
id : Integer

OclType
name() : String
attributes() : Set(String)
associationEnds : Set(String)
operations() : Set(String)
supertypes() : Set(OclType)
allSupertypes() ; Set(OclType)
allInstances() : Set(OclAny)

Eg, Account.name() = “Account”
Eg, Account.attributes() = Set{“balance”, “id”}
Eg, Customer.supertypes() = Set{Person}
Eg, Customer.allSupertypes() = Set{Person, Party}

Person

Party

Organisation

© Jason Gorman 2005 116

Built-in OCL Types : OclAny

OclAny
oclIsKindOf(OclType) : Booelan
oclIsTypeOf(OclType) : Boolean
oclAsType(OclType) : OclAny
oclInState(OclState) : Boolean
oclIsNew() : Boolean
oclType() : OclType

Eg, jason.oclType() = Customer
Eg, jason.oclIsKindOf(Person) = true
Eg, jason.oclIsTypeOf(Person) = false
Eg, Account.allInstances() = Set{account1, account2, account3, account4}

jason : Customer

account1 : Account

account3 : Account

id = 2543
balance = 450

id = 4288
balance = 250

account2 : Account
id = 4569
balance = 100

account4 : Account
id = 5613
balance = 50

accounts

accounts
accounts

accounts

holder

holder

holder

© Jason Gorman 2005 117

More on OCL
• OCL 1.5 Language Specification
• OCL Evaluator – a tool for editing, syntax

checking & evaluating OCL
• Octopus OCL 2.0 Plug-in for Eclipse

© Jason Gorman 2005 118

UML for Java Developers
Modeling The User Experience

© Jason Gorman 2005 119

title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“
title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“

View Instances
: SearchPage

: SearchBox

keyw ords = “”

: ResultsPage
keyw ords = “UML and London”
resultsCount = 22
pageNo = 1

: JobSummary
title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“

1 : ResultsPageLink

pageNo = 1
2 : ResultsPageLink

pageNo = 2

next

3 : ResultsPageLink

pageNo = 3

keyw ords search

Your search for “UML and London” returned 22 results

Solutions Architect London £70,000 p.a.

Senior .NET Developer City £55,000 p.a.

Architect London £65k

ASP.NET Analyst Programmer London £55 p.h.

Agile .NET Developer City To 70k

Solutions Architect London £70,000 p.a.

Senior .NET Developer City £55,000 p.a.

Architect London £65k

ASP.NET Analyst Programmer London £55 p.h.

Agile .NET Developer City To 70k

1 2 3 Next

pageLinks[0]

pageLinks[1]

pageLinks[2]

© Jason Gorman 2005 120

View Models

SearchPage SearchBox

keyw ords : string
search()
setKeywords(keywords : string)

ResultsPage
keyw ords : string
resultsCount : int
pageNo : int

JobSummary
title: string
location : string
package : string
select()

ResultsPageLink

pageNo : int

select()

11

1

0..1

1..10*

1..*

1

0..1
back

next 0..1

1

1

{ordered}

keyw ords search

Your search for “UML and London” returned 22 results

Solutions Architect London £70,000 p.a.

Senior .NET Developer City £55,000 p.a.

Architect London £65k

ASP.NET Analyst Programmer London £55 p.h.

Agile .NET Developer City To 70k

Solutions Architect London £70,000 p.a.

Senior .NET Developer City £55,000 p.a.

Architect London £65k

ASP.NET Analyst Programmer London £55 p.h.

Agile .NET Developer City To 70k

1 2 3 Next

pageLinks

© Jason Gorman 2005 121

Storyboards & Animations
keyw ords search

Your search for “UML and London” returned 22 results

Solutions Architect London £70,000 p.a.

Senior .NET Developer City £55,000 p.a.

Architect London £65k

ASP.NET Analyst Programmer London £55 p.h.

Agile .NET Developer City To 70k

Solutions Architect London £70,000 p.a.

Senior .NET Developer City £55,000 p.a.

Architect London £65k

ASP.NET Analyst Programmer London £55 p.h.

Agile .NET Developer City To 70k

1 2 3 Next

keyw ords search

Your search for “UML and London” returned 22 results

.NET Architect London £50,000 p.a.

.NET Developer London £35,000 p.a.

VB.NET Code Monkey London £20k + peanuts

Lead developer London £60 p.h.

Agile .NET Developer City To 70k

Back 1 2 3 Next

.NET Architect London £50,000 p.a.

.NET Developer London £35,000 p.a.

VB.NET Code Monkey London £20k + peanuts

Lead developer London £60 p.h.

Agile .NET Developer City To 70k
select()

© Jason Gorman 2005 122

Filmstrips

title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“
title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“

: SearchPage

: SearchBox

key words = “”

: ResultsPage

key words = “UML and London”
resultsCount = 22
pageNo = 2

: JobSummary

title = “.NET Architect”
location = “London”
package = “£50,000 p.a.“

1 : ResultsPageLink

pageNo = 1

2 : ResultsPageLink

pageNo = 2

next

3 : ResultsPageLink

pageNo = 3

pageLinks[0]
pageLinks[1]

pageLinks[2]
back

title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“
title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“

: SearchPage

: SearchBox

key words = “”

: ResultsPage

key words = “UML and London”
resultsCount = 22
pageNo = 1

: JobSummary

title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“

1 : ResultsPageLink

pageNo = 1

2 : ResultsPageLink

pageNo = 2

next

3 : ResultsPageLink

pageNo = 3

pageLinks[0]

pageLinks[1]

pageLinks[2]

select()

© Jason Gorman 2005 123

Enumerate The Outcomes

title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“
title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“

: SearchPage

: SearchBox

key words = “”

: ResultsPage

keywords = “UML and London”
resultsCount = 22
pageNo = 2

: JobSummary

title = “.NET Architect”
location = “London”
package = “£50,000 p.a.“

1 : ResultsPageLink

pageNo = 1

2 : ResultsPageLink

pageNo = 2

next

3 : ResultsPageLink

pageNo = 3

pageLinks[0]
pageLinks[1]

pageLinks[2]
back

title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“
title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“

: SearchPage

: SearchBox

key words = “”

: ResultsPage

key words = “UML and London”
resultsCount = 22
pageNo = 1

: JobSummary

title = “Solutions Architect”
location = “London”
package = “£70,000 p.a.“

1 : ResultsPageLink

pageNo = 1

2 : ResultsPageLink

pageNo = 2

next

3 : ResultsPageLink

pageNo = 3

pageLinks[0]

pageLinks[1]

pageLinks[2]

select()

1. New ResultsPage created
with keywords = old
ResultsPage keywords and
results count = old count
and pageNo = pageNo of
selected ResultsPageLink

2. New ResultsPage
inserted into resultsPage
role

3. ResultPageLinks from old
ResultsPage inserted into pageLinks
collection of new ResultsPage

4. Because 2 is now current page
number, 3 becomes next
ResultsPageLink

5. Because 2 is now current page
number, 1 becomes back
ResultsPageLink

5. 2nd ten JobSummaries for jobs
containing keywords “UML and London”
are insrted into the the role jobSummary

© Jason Gorman 2005 124

Screen flows & Event Handlers
key words search

Your search for “UML and London” returned 22 results

Solutions Architect London £70,000 p.a.
Senior .NET Developer City £55,000 p.a.
Architect London £65k
ASP.NET Analyst Programmer London £55 p.h.
Agile .NET Developer City To 70k
Solutions Architect London £70,000 p.a.
Senior .NET Developer City £55,000 p.a.
Architect London £65k
ASP.NET Analyst Programmer London £55 p.h.
Agile .NET Developer City To 70k

1 2 3 Next

key words search

13,495 activ e jobs

27th January 2005
search()
/ search(keyw ords)

select()
/ show ResultsPage(pageNo)

search()
/ search(keyw ords)

Job Title: Senior .NET Developer
Location: City
Salary: £55,000 p.a.
Start Date: ASAP

Date Posted: 17/1/05 12:33

Description:

Financial services blue chip looking for talented .NET
dev eloper to suck the lif e out of. Must have strong OO/UML,
agile/XP and be good in a fist fight. Banking experience
desirable.

Advertiser: Computer Persons Ltd

Contact: John Q. Agent
Phone: 0207 111 2345
Email: john.agent@computerpersons.co.uk
Ref: CPDOTNET023

back to search results

select()
/ show JobDetails(jobSummary)

back()
/ backToResults()

© Jason Gorman 2005 125

Screen flows & Test Scripts
key words search

Your search for “UML and London” returned 22 results

Solutions Architect London £70,000 p.a.
Senior .NET Developer City £55,000 p.a.
Architect London £65k
ASP.NET Analyst Programmer London £55 p.h.
Agile .NET Developer City To 70k
Solutions Architect London £70,000 p.a.
Senior .NET Developer City £55,000 p.a.
Architect London £65k
ASP.NET Analyst Programmer London £55 p.h.
Agile .NET Developer City To 70k

1 2 3 Next

key words search

13,495 activ e jobs

27th January 2005

1. Enter “UML and London”

3. Click “Next” link

Job Title: Senior .NET Developer
Location: City
Salary: £55,000 p.a.
Start Date: ASAP

Date Posted: 17/1/05 12:33

Description:

Financial services blue chip looking for talented .NET
dev eloper to suck the lif e out of. Must have strong OO/UML,
agile/XP and be good in a fist fight. Banking experience
desirable.

Advertiser: Computer Persons Ltd

Contact: John Q. Agent
Phone: 0207 111 2345
Email: john.agent@computerpersons.co.uk
Ref: CPDOTNET023

back to search results

4. Click “Senior .NET Developer” link

5. Click “Back to search results” link

2. Click “search” button

© Jason Gorman 2005 126

Model-View-Controller
jobSummary : JobSummary

select()

: SearchController

showJobDetails(jobSummary)

: JobBank

job := f indJob(jobSummary.jobId)

: JobDetailsPage

JobDetailsPage(job)

set properties from job attributes

© Jason Gorman 2005 127

Java Design Principles

Jason Gorman

© Jason Gorman 2005 128

The Need For Good Design
• Systems must meet changing needs throughout their lifetime, and

therefore code must be more open to change
• Code that is hard to change soon becomes a burden

– Too rigid
– Too fragile (easy to break dependant code)
– Less reusable (too many dependencies on other components)
– High Viscosity – change is difficult for various reasons, including badly

designed code, poor tools that make change harder, lack of automated
tests etc

• Systems that are easier to change are
– Loosely coupled – different parts of the system depend as little as

possible on other parts of the system
– Testable (and have a comprehensive suite of regressions so you know

if you’ve broken something when making a change)
– Well-structured so you can easily find what you’re looking for

© Jason Gorman 2005 129

OO Design Principles
• Class Design

– How should classes be designed so that software is
easier to change and reuse?

• Package Cohesion
– How should classes be packaged together so that

software is easier to change and reuse?
• Package Coupling

– How should packages be related so that software is
easier to change and easier to reuse?

© Jason Gorman 2005 130

Class Design Principles
– Single Responsibility

• Avoid creating classes that do more than one thing. The more responsibilities a class
has, the more reasons there may be to need to change it.

– Interface Segregation
• More client-specific interfaces are preferable to fewer general purpose interfaces.

– Dependency Inversion
• Avoid binding to concrete types that change more often, and encourage binding to

abstract types that are more stable
– Open-Closed

• Leave modules open to extension but closed to modification. Once a module is tested
and working, leave it that way!

– Liskov Substitution (“Design By Contract”)
• Ensure that any object can be substituted for an object of any of its subtypes without

breaking the code

© Jason Gorman 2005 131

Refactoring
• When we find code that is rigid, fragile, or

generally poorly designed we need to
improve it without changing what the code
does

• Martin Fowler has coined the term
refactoring to mean “improving the design
of code without changing its function”

© Jason Gorman 2005 132

The Single Responsibility Principle
public class Customer {

private int id;
private String name;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String toXml(){
String xml = "<Customer>" + "\n";
xml += "<ID>" + Integer.toString(id)
+ "</ID>" + "\n";
xml += "<Name>" + name
+ "</Name>" + "\n";
xml += "</Customer>";
return xml;

}

}

The Customer class is doing two things. It is
modeling the customer business object, and
also serializing itself as XML.

© Jason Gorman 2005 133

The Single Responsibility Principle -
Refactoredpublic class Customer {

private int id;
private String name;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
}

Split Customer into two classes – one
responsible for modeling the customer
business object, the other for serializing
customers to XML

public class CustomerSerializer {

public String toXml(Customer customer){
String xml = "<Customer>" + "\n";
xml += "<ID>" + Integer.toString(customer.getId())
+ "</ID>" + "\n";
xml += "<Name>" + customer.getName()
+ "</Name>" + "\n";
xml += "</Customer>";
return xml;

}
}

© Jason Gorman 2005 134

The Interface Segregation Principle
Some clients will only need to know the
unique ID of a business object, other clients
will only need to serialize an object to XML.

public class Customer {

private int id;
private String name;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String toXml(){
String xml = "<Customer>" + "\n";
xml += "<ID>" + Integer.toString(id)
+ "</ID>" + "\n";
xml += "<Name>" + name
+ "</Name>" + "\n";
xml += "</Customer>";
return xml;

}

}

© Jason Gorman 2005 135

The Interface Segregation Principle -
Refactored

public class Customer implements
BusinessObject, SerializableToXml {

private int id;
private String name;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String toXml(){
String xml = "<Customer>" + "\n";
xml += "<ID>" + Integer.toString(id)
+ "</ID>" + "\n";
xml += "<Name>" + name
+ "</Name>" + "\n";
xml += "</Customer>";
return xml;

}
}

Now any client that needs the ID only needs to
bind to BusinessObject, and any client that
needs to serialize the customer to XML only
needs to bind to SerializableToXml

public interface BusinessObject {
public int getId();
public void setId(int id);

}

public interface SerializableToXml {
public String toXml();

}

© Jason Gorman 2005 136

The Dependency Inversion Principle
public class Customer
{
…
}

Currently, any client that needs to serialize
business objects has to know about concrete
business objects like Customer and Invoice,
and also has to know about concrete
serializers like CustomerSerializer and
InvoiceSerializer. You will have to write code
for every concrete type of business object and
serializer.

public class CustomerSerializer
{

public String toXml(Customer customer)
{
}

}

Customer customer = dbQuery.getCustomer(144);
CustomerSerializer serializer = new CustomerSerializer();
String customerXml = serializer.toXml(customer);
…
Invoice invoice = dbQuery.getInvoice(2366);
Serializer = new InvoiceSerializer();
String invoiceXml = serializer.toXml(invoice);

public class Invoice
{
…
}

public class InvoiceSerializer
{

public String toXml(Invoice invoice)
{
}

}

© Jason Gorman 2005 137

The Dependency Inversion Principle -
Refactored

public class Customer implements BusinessObject
{
…
}

Now clients only needs to know about
BusinessObject and XmlSerializer, so you only
have to write the same code once.

Dependancy inversion makes code easier to
change by removing duplication of client code, so
you get to do one thing in one place only – ie, you
only need to change it in one place.

public class CustomerSerializer implements XmlSerializer
{

public String toXml(BusinessObject obj)
{
}

}

BusinessObject obj = dbQuery.getObject(id);
XmlSerializer serializer = SerializerFactory.getSerializer(obj.getClass());
String xml = serializer.toXml(obj);

public class Invoice implements BusinessObject
{
…
}

public class InvoiceSerializer implements XmlSerializer
{

public String toXml(BusinesObject obj)
{
}

}

A Factory is an object that creates or gets instances of concrete
classes without revealing to the client the specific type of that
object. The client only needs to know about the abstraction.

© Jason Gorman 2005 138

The Open-Closed Principle
public class Customer
{

private int id;
private String name;
// added to support loyalty card customers
private int loyaltyPoints;

…

public int getLoyaltyPoints() {
return loyaltyPoints;

}

public void addLoyaltyPoints(int points)
{

loyaltyPoints += points;
}

}

Event though our original Customer class
was thoroughly tested and working, we have
chosen here to modify it to add support for
customers who can earn loyalty points when
they shop with us.

There is now a chance of introducing new
bugs into the Customer class, breaking any
code that depends on it.

© Jason Gorman 2005 139

The Open-Closed Principle - Refactored
public class LoyaltySchemeCustomer extends Customer
{

private int loyaltyPoints;

public int getLoyaltyPoints() {
return loyaltyPoints;

}
public void addLoyaltyPoints(int points)
{

loyaltyPoints += points;
}

}

We can avoid the risk of introducing new
bugs into the Customer class by leaving it as
it is and extending it instead.

© Jason Gorman 2005 140

The Liskov Substitution Principle
public class BankAccount {

protected float balance = 0;

public void deposit(float amount){
balance += amount;

}

public void withdraw(float amount) throws ArgumentException {
if(amount > balance)
{

throw new ArgumentException();
}
balance -= amount;

}

public float getBalance() {
return balance;

}
}

public void transferFunds(BankAccount payee, BankAccount payer,
float amount) throws ArgumentException {

if(payer.getBalance() >= amount)
{

payer.withdraw(amount);
payee.deposit(amount);

}
else
{

throw new ArgumentException();
}

}

Consider this example where the client only
transfers funds from a payer BankAccount to a
payee BankAccount when the payer has a great
enough balance to cover the amount

© Jason Gorman 2005 141

The Liskov Substitution Principle
public class SettlementAccount extends BankAccount {

private float debt = 0;

public void AddDebt(float amount)
{

debt += amount;
}

public void withdraw(float amount) throws ArgumentException
{

if(amount > (balance - debt))
{

throw new ArgumentException();
}
super.withdraw (amount);

}
}

When an instance of SettlementAccount is
substituted for a BankAccount it could cause an
unhandled exception to be thrown if the transfer
amount is greater than the payer’s balance – the
debt

public void transferFunds(BankAccount payee, BankAccount payer,
float amount) throws ArgumentException {

if(payer.getBalance() >= amount)
{

payer.withdraw(amount);
payee.deposit(amount);

}
else
{

throw new ArgumentException();
}

}

© Jason Gorman 2005 142

The Liskov Substitution Principle -
Refactored

If we abstract the calculation of the funds
available to a BankAccount and any subtype of
BankAccount then we can rewrite the client so
that it will work with any subtype of
BankAccount

public class BankAccount {

protected float balance = 0;

public void deposit(float amount){
balance += amount;

}

public void withdraw(float amount) throws ArgumentException {
if(amount > getAvailableFunds())
{

throw new ArgumentException();
}
balance -= amount;

}

public float getAvailableFunds() {
return balance;

}
}

public void transferFunds(BankAccount payee, BankAccount payer,
float amount) throws ArgumentException {

if(payer.getAvailableFunds() >= amount)
{

payer.withdraw(amount);
payee.deposit(amount);

}
else
{

throw new ArgumentException();
}

}

© Jason Gorman 2005 143

The Liskov Substitution Principle -
Refactored

public class SettlementAccount extends BankAccount {

private float debt = 0;

public void AddDebt(float amount)
{

debt += amount;
}

public void withdraw(float amount) throws ArgumentException
{

if(amount > getAvailableFunds())
{

throw new ArgumentException();
}
super.withdraw (amount);

}

public float getAvailableFunds(){
return balance - debt;

}
}

public void transferFunds(BankAccount payee, BankAccount payer,
float amount) throws ArgumentException {

if(payer.getAvailableFunds() >= amount)
{

payer.withdraw(amount);
payee.deposit(amount);

}
else
{

throw new ArgumentException();
}

}

© Jason Gorman 2005 144

Package Cohesion Principles
• Reuse-Release Equivalence

– Code that can be reused is code that has been released in a complete, finished
package. The developers are only reusing that code if they never need to look at
it or make changes to it (“black box reuse”)

– Developers reusing packages are protected from subsequent changes to that
code until they choose to integrate with a later release

• Common Closure
– If we package highly dependant classes together, then when one class in a

package needs to be changed, they probably all do.
• Common Reuse

– If we package highly dependant classes together, then when we reuse one class
in a package, we probably reuse them all

© Jason Gorman 2005 145

Reuse-Release Equivalence Principle

• If Jim releases version 1.0.12 of ImageManip.jar to Jane,
and Jane can use that as is and doesn’t need to keep changing
her code every time Jim changes his code, then Jane is
reusing the ImageManip.jar code
• If Jim releases his code for the ImageManip.jar to Jane, and
Jane makes a couple of small changes to suit her needs, then
Jane is not reusing Jim’s code
• If Jane adds Jim’s working ImageManip Eclipse project to
her solution from source control, so that whenever Jim makes
changes to his code Jane potentially must change her code,
then Jane is not reusing Jim’s code.

© Jason Gorman 2005 146

Common Closure Principle

• If Jane asks Jim to change the Blur() method on his Effect class, and to do
this he has to make changes to many of the classes in the ImageManip
source, but no changes to any classes in other packages on which
ImageManip depends, then ImageManip has common closure

• If Jane asks Jim to change the Blur() method on the Effect class and he
doesn’t need to change any of the other classes in ImageManip then the
package does not have common closure

• If Jane asks Jim to change the Blur() method on the Effect class, and he
has to change classes in other projects on which ImageManip depends,
then the package does not have common closure

© Jason Gorman 2005 147

Common Reuse Principle

• If Jane uses the Effect class in ImageManip.jar, and this class uses code in
most of the other classes in the same assembly, then ImageManip.jar has
common reuse

• If Jane uses the Effect class in ImageManip.jar, and this class does not use
code in any of the other classes in the same assembly then ImageManip.jar
does not have common reuse

• If Jane uses the Effect class in ImageManip.jar, and this class relies on
many classes in other assemblies, then ImageManip.jar does not have
common reuse

© Jason Gorman 2005 148

Package Cohesion Summary
• The unit of reuse is the unit of release – the

package (eg, folders containing compiled .class
files, .jar files, .war files, .ear files etc). Packages
should be reusable without the need to make
changes to them, or the need to keep updating
your code whenever they change

• Package clusters of closely dependant classes
together in the same assembly – packages
should be highly cohesive

• Have as few dependencies between packages
as possible – packages should be loosely
coupled

© Jason Gorman 2005 149

Package Dependencies
Principles

• Acyclic Dependencies
– Packages should not be directly or indirectly

dependant on themselves
• Stable Dependencies Principle

– Packages should depend on other packages more
stable (changing less often) than themselves

• Stable Abstractions Principle
– The more abstract a package is, the more stable it will

be

© Jason Gorman 2005 150

Acyclic Dependencies Principle

PersistenceLayer

CommandLayerDomainLayer

DomainLayerr depends on PersistenceLayer, which depends on CommandLayer,
which has a reference back to DomainLayer. Therefore DomainLayer is indirectly
dependant on itself.

© Jason Gorman 2005 151

Stable Dependencies & Stable Abstractions Principles

AbstractDomainObject
- objectId : int
getObjectID() : int

DomainObject

Account
- balance : float = 0
+ deposit(amount : float)
+ withdraw(amount : float)

The classes and interfaces in DomainFramework are less likely to change because they are
abstractions, so that package is more stable then BankingDomain, which contains concrete classes
which will change more often. It is appropriate for BankingDomain to reference
DomainFramework, but a dependency the other way would be unwise.

More abstract -> more stable

More concrete -> less stable

DomainFramework

BankingDomain

© Jason Gorman 2005 152

UML for Java Developers
Design Patterns

© Jason Gorman 2005 153

What Are Design Patterns?
• Tried-and-tested solutions to common design

problems
• Gang Of Four

– Creational Patterns
• How can we hide the creation of concrete types of objects, or

of complex/composite objects so that clients can bind to an
abstraction?

– Structural Patterns
• How can we organise objects to solve a variety of design

challenges?
– Behavioural Patterns

• How can we use objects to achieve challenging functionality?

© Jason Gorman 2005 154

Documenting Patterns
• Name
• Also Known As
• Motivation
• Participants
• Implementation
• Consequences
• Related Patterns

© Jason Gorman 2005 155

Creational Patterns
• Abstract Factory

– Abstract the creation of families of related object types
• Builder

– Abstract the creation of complex/composite objects
• Factory Method

– Abstract the creation of instances of related types
• Prototype

– Create an objects based on the state of an existing object (clone
an object)

• Singleton
– Ensure only one instance of a specific type exists in the system

© Jason Gorman 2005 156

Abstract Factory
Client

AbstractFactory

CreateProductA() : AbstractProductA
CreateProductB() : AbstractProductB

AbstractProductA AbstractProductB

ConcreteProductBX ConcreteProductBYConcreteProductAX ConcreteProductAY

ConcreteFactory X

CreateProductA() : AbstractProductA
CreateProductB() : AbstractProductB ConcreteFactoryY

CreateProductA() : AbstractProductA
CreateProductB() : AbstractProductB

© Jason Gorman 2005 157

Abstract Factory - Java Example
public abstract class ZooFactory
{

public abstract Enclosure createEnclosure();
public abstract Animal createAnimal();

}

public abstract class Enclosure
{
}

public abstract class Animal
{
}

public abstract class ZooFactory
{

public abstract Enclosure createEnclosure();
public abstract Animal createAnimal();

}

public abstract class Enclosure
{
}

public abstract class Animal
{
}

public class TigerZooFactory extends ZooFactory
{

public Enclosure createEnclosure()
{

return new Cage();
}

public Animal createAnimal()
{

return new Tiger();
}

}

public class Cage extends Enclosure
{
}

public class Tiger extends Animal
{
}

public class TigerZooFactory extends ZooFactory
{

public Enclosure createEnclosure()
{

return new Cage();
}

public Animal createAnimal()
{

return new Tiger();
}

}

public class Cage extends Enclosure
{
}

public class Tiger extends Animal
{
}

public class SharkZooFactory extends ZooFactory
{

public Enclosure createEnclosure()
{

return new Tank();
}

public Animal createAnimal()
{

return new Shark();
}

}

public class Tank extends Enclosure
{
}

public class Shark extends Animal
{
}

public class SharkZooFactory extends ZooFactory
{

public Enclosure createEnclosure()
{

return new Tank();
}

public Animal createAnimal()
{

return new Shark();
}

}

public class Tank extends Enclosure
{
}

public class Shark extends Animal
{
}

© Jason Gorman 2005 158

Factory Method

AbstractCreator

FactoryMethod() : AbstractProduct

ConcreteCreator

Factory Method() : AbstractProduct

AbstractProduct

ConcreteProduct

© Jason Gorman 2005 159

Factory Method – Java Example

public abstract class Organisation
{

public abstract Manager createManager();
}

public abstract class Manager
{
}

public abstract class Organisation
{

public abstract Manager createManager();
}

public abstract class Manager
{
}

public class School extends Organisation
{

public Manager createManager()
{

return new HeadMaster();
}

}

public class HeadMaster extends Manager
{
}

public class School extends Organisation
{

public Manager createManager()
{

return new HeadMaster();
}

}

public class HeadMaster extends Manager
{
}

public class PublicLimitedCompany extends Organisation
{

public Manager createManager()
{

return new Chairman();
}

}

public class Chairman extends Manager
{
}

public class PublicLimitedCompany extends Organisation
{

public Manager createManager()
{

return new Chairman();
}

}

public class Chairman extends Manager
{
}

© Jason Gorman 2005 160

Singleton – Java Example
public class Singleton
{

private static Singleton instance;

private Singleton()
{
}

public static Singleton getInstance()
{

if(instance == null)
instance = new Singleton();

return instance;
}

}

public class Singleton
{

private static Singleton instance;

private Singleton()
{
}

public static Singleton getInstance()
{

if(instance == null)
instance = new Singleton();

return instance;
}

}

public class HttpContext
{

private static HttpContext current;

private HttpContext()
{
}

public static HttpContext getCurrent()
{

if(current == null)
current = new HttpContext();

return current;
}

}

public class HttpContext
{

private static HttpContext current;

private HttpContext()
{
}

public static HttpContext getCurrent()
{

if(current == null)
current = new HttpContext();

return current;
}

}

© Jason Gorman 2005 161

Structural Patterns
• Adaptor

– Provide an expected interface to existing methods
• Bridge

– Separate on object’s implementation from its interface
• Composite

– Create tree structures of related object types
• Decorator

– Add behaviour to objects dynamically
• Façade

– Abstract a complex subsystem with a simple interface
• Flyweight

– Reuse fine-grained objects to minimise resource usage
• Proxy

– Present a placeholder for an object

© Jason Gorman 2005 162

Adaptor

Client Adaptor

ExpectedMethod()

Adaptee

AdaptedMethod()

ConcreteAdaptor

ExpectedMethod()

© Jason Gorman 2005 163

Adaptor – Java Example

public interface SessionAdaptor
{

object getSessionVariable(string key);
}

public class HttpSessionAdaptor implements SessionAdaptor
{

private HttpSessionState session;

public HttpSessionAdaptor(HttpSession session)
{

this.session = session;
}

public object getSessionVariable(string key)
{

return session.getValue(key);
}

}

public interface SessionAdaptor
{

object getSessionVariable(string key);
}

public class HttpSessionAdaptor implements SessionAdaptor
{

private HttpSessionState session;

public HttpSessionAdaptor(HttpSession session)
{

this.session = session;
}

public object getSessionVariable(string key)
{

return session.getValue(key);
}

}

© Jason Gorman 2005 164

Composite

Component

Leaf Composite

*
children

0..1

parent

© Jason Gorman 2005 165

Composite – Java Example
public abstract class Contract
{

protected int contractValue;

public abstract int getContractValue();
}

public class SimpleContract extends Contract
{

public int getContractValue()
{

return contractValue;

}
}

public class UmbrellaContract extends Contract
{

private ArrayList subcontracts = new ArrayList();

public int getContractValue()
{

int totalValue = 0;
for(Iterator iterator = subcontracts.getIterator(); iterator.hasNext())
{

totalValue += ((Contract)iterator.next()).getContractValue();
}
return totalValue;

}
}

public abstract class Contract
{

protected int contractValue;

public abstract int getContractValue();
}

public class SimpleContract extends Contract
{

public int getContractValue()
{

return contractValue;

}
}

public class UmbrellaContract extends Contract
{

private ArrayList subcontracts = new ArrayList();

public int getContractValue()
{

int totalValue = 0;
for(Iterator iterator = subcontracts.getIterator(); iterator.hasNext())
{

totalValue += ((Contract)iterator.next()).getContractValue();
}
return totalValue;

}
}

© Jason Gorman 2005 166

Behavioural Patterns
• Chain Of Responsibility

– Forward a request to the object that handles it
• Command

– Encapsulate a request as an object in its own right
• Interpreter

– Implement an interpreted language using objects
• Iterator

– Sequentially access all the objects in a collection
• Mediator

– Simplify communication between objects
• Memento

– Store and retrieve the state of an object
• Observer

– Notify interested objects of changes or events
• State

– Change object behaviour according to its state
• Strategy

– Encapsulate an algorithm in a class
• Template Method

– Defer steps in a method to a subclass
• Visitor

– Define new behaviour without changing a class

© Jason Gorman 2005 167

Chain Of Responsibility

Client

AbstractHandler

HandleRequest(request)

ConcreteHandlerA

HandleRequest(request)

ConcreteHandlerB

HandleRequest(request)

next
0..1

© Jason Gorman 2005 168

Chain Of Responsibility – Java Example
public abstract class InterceptingFilter
{

private InterceptingFilter next;

public abstract void handleRequest(HttpRequest request);

public InterceptingFilter getNext()
{

return next;
}

public void setNext(InterceptingFilter next)
{

this.next = next;
}

}

public abstract class InterceptingFilter
{

private InterceptingFilter next;

public abstract void handleRequest(HttpRequest request);

public InterceptingFilter getNext()
{

return next;
}

public void setNext(InterceptingFilter next)
{

this.next = next;
}

}

public class AuthenticationFilter extends InterceptingFilter
{

public void handleRequest(HttpRequest request)
{

// check user is logged in.
// if not, redirect to log in page.

}
}

public class AccessControlFilter extends InterceptingFilter
{

public void handleRequest(HttpRequest request)
{

// check user has permission to
// make this specific request

}
}

public class AuthenticationFilter extends InterceptingFilter
{

public void handleRequest(HttpRequest request)
{

// check user is logged in.
// if not, redirect to log in page.

}
}

public class AccessControlFilter extends InterceptingFilter
{

public void handleRequest(HttpRequest request)
{

// check user has permission to
// make this specific request

}
}

public class ActionFilter extends InterceptingFilter
{

public void handleRequest(HttpRequest request)
{

// perform requested action and
// write logical response to session state

}
}

public class RenderFilter extends InterceptingFilter
{

public void handleRequest(HttpRequest request)
{
// retrieve response from session and apply XSLT, then
// write resulting HTML to HttpResponse
}

}

public class ActionFilter extends InterceptingFilter
{

public void handleRequest(HttpRequest request)
{

// perform requested action and
// write logical response to session state

}
}

public class RenderFilter extends InterceptingFilter
{

public void handleRequest(HttpRequest request)
{
// retrieve response from session and apply XSLT, then
// write resulting HTML to HttpResponse
}

}

© Jason Gorman 2005 169

Observer Pattern

Observable

AddObserver(observer)
Remov eObserver(observer)
NotifyObserv ers()

Observer

Update()
*

observers

ConcreteObserver

observerState

Update()

ConcreteObservable

state

GetState()

1

subject

© Jason Gorman 2005 170

Observer Pattern – Java Example

public abstract class Observable
{

priv ate List observ ers = new ArrayList();

public void addObserver(Observer observer)
{

observers.add(observer);
}

public void remov eObserver(Observer observ er)
{

observers.remove(observ er);
}

public void notifyObserv ers()
{

for(Iterator it = observers.getIterator(); it.hasNext())
{

((Observer)it.next()).update();
}

}
}

public interface Observer
{

void update();
}

public abstract class Observable
{

priv ate List observ ers = new ArrayList();

public void addObserver(Observer observer)
{

observers.add(observer);
}

public void remov eObserver(Observer observ er)
{

observers.remove(observ er);
}

public void notifyObserv ers()
{

for(Iterator it = observers.getIterator(); it.hasNext())
{

((Observer)it.next()).update();
}

}
}

public interface Observer
{

void update();
}

public class Stock extends Observable
{

private float price;
private String symbol;

public String getSymbol()
{

return symbol; }

public float getPrice()
{

return price;
}

public void setPrice(float price)
{

this.price = price;
notifyObservers();

}
}

public class StockTicker extends Observer
{

private Stock subject;

private String displayText;

public void update()
{

displayText = subject.getSymbol() + ": " +
subject.getPrice();

}

}

public class Stock extends Observable
{

private float price;
private String symbol;

public String getSymbol()
{

return symbol; }

public float getPrice()
{

return price;
}

public void setPrice(float price)
{

this.price = price;
notifyObservers();

}
}

public class StockTicker extends Observer
{

private Stock subject;

private String displayText;

public void update()
{

displayText = subject.getSymbol() + ": " +
subject.getPrice();

}

}

© Jason Gorman 2005 171

Further Reading
• Hillside Patterns Catalogue

– http://hillside.net/patterns/
• Design Patterns in Java

– http://www.patterndepot.com/put/8/JavaPatterns.htm

© Jason Gorman 2005 172

Practical

© Jason Gorman 2005 173

amerzon.co.uk
Functional Requirements

© Jason Gorman 2005 174

Users & Objectives
• Customer

– Find a book
– Buy a book
– Review the progress of an order
– Cancel an order
– Review a book

• Author
– Write an author’s summary of a book
– Write an author profile
– Review sales of a book

• Publisher
– Supply details of a new book
– Review sales of a book

• Administrator
– Approve a book review
– Approve a new book listing

• Logistics Manager
– Review delivery reliability

© Jason Gorman 2005 175

Find A Book
• Customers can either browse for a book by genre, by author, or

search for books that have specific keywords in the title
• The available genres are:

– Thriller
– Crime
– Romance
– Comedy
– Sci-Fi/Fantasy
– Horror
– Non-fiction

• Customers can select a title from the list of available titles, and view
details about that book – including the book title, the name of the
author, the date the book was/will be published, the price, a
publisher’s summary, an optional author’s summary, a thumbnail
image of the cover, the ISBN of the book, and any reviews by
customers who ordered that book through amerzon.co.uk

© Jason Gorman 2005 176

Buy A Book
• Customers, once they have selected a book, can order it online and

pay using their credit or debit card
• To process their order, we require:

– Their full name
– A shipping address
– Their email address to confirm their order and update them its progress
– Their credit card details:

• The name on the card
• The type of card (we accept VISA, MasterCard & American Express)
• The card number
• The expiry date
• The valid from date
• The card security number (the last 3 digits found on the signature strip)
• The billing address (default to the shipping address)

• Once payment has been authorised by their card issuer, we will
send a confirmation email of their order to the email address
supplied

© Jason Gorman 2005 177

Review Progress Of An Order
• Customers can see what has happened to their order once it has been confirmed. An

order can be in one of several stages:
– In Progress

• The customer has placed line items in their shopping basket, but have not confirmed their order yet
– Confirmed

• The order has been paid for but has not yet shipped
– Shipped

• The order has left the warehouse
– Fulfilled

• The customer has received the order
– Left With Neighbour

• The order’s package was left with someone nearby because the customer was out. In this instance,
they need the customer to confirm that they received the order online.

– Undelivered
• The recipient was not known at the shipping address or no neighbour was available to hold the

package. The customer is contacted by email and asked to supply a different address. If they do not
respond within 72 hours, the order is cancelled and refund is made – minus delivery and
administration costs

– Canceled
• An order, once paid for, has been canceled by the customer. This can only be done before the order

has shipped. In this instance, a full refund is made to the customer’s card via the payment gateway.

© Jason Gorman 2005 178

Cancel An Order
• Customers can cancel an order before it has been

shipped. When an order is in progress (they have not
paid yet) then the order is removed. If they have paid,
then the order remains in the system for audit purposes.
In these circumstances, the full amount is refunded to
the customer’s card via the payment gateway. They can
also cancel an order amerzon.co.uk have been unable to
deliver, but in these circumstances the order amount
minus the shipping and administration costs are
refunded. Shipping and administration are not charged
for if the order is not cancelled.

© Jason Gorman 2005 179

Review A Book
• Customers can supply reviews with ratings

out of 5 for any books they have
purchased through amerzon.co.uk

• Reviews must be approved by an
administrator before they can be published
on the site

© Jason Gorman 2005 180

Approve A Book Review
• Administrators must check that book

reviews do not break amerzon.co.uk policy
before they can be published on the site

© Jason Gorman 2005 181

Supply Details Of A New Book
• Publishers can submit new book titles to

amerzon.co.uk. They must supply the title of the
book, the authors of the book, the recommended
retail price (usually printed on the back cover),
the book’s ISBN number, the date it was/will be
published and the book’s genre. They must also
supply a maximum of 200 words to describe the
book (not to be confused with the author’s
summary), a thumbnail image of the book’s front
cover and a larger version of the same image.

• New titles will not be listed until they have been
approved by an administrator.

© Jason Gorman 2005 182

Approve New Book Listing
• Administrators must review a book listing

before it can appear on the site. This is to
ensure it does not break amerzon.co.uk
policies. Once a listing has been
approved, it will appear under the genre
specified by the publisher.

© Jason Gorman 2005 183

Review Book Sales
• Publishers and authors can find out how

many copies of a book have been sold in
any given month, as well as the total sold
since the book was listed. Their book is
ranked by number of sales per month.
When searching or browsing for titles,
higher ranking books are displayed first.

© Jason Gorman 2005 184

Write An Author’s Summary
• Authors can submit up to 200 words of text

that describes their book. This summary
must be approved by an administrator
AND the book’s publisher before it can
appear with the book listing

© Jason Gorman 2005 185

Write An Author’s Profile
• Authors can supply details about

themselves in 300 or words or less. This
will be displayed along with a list of titles
by this author. Customers can select an
author when viewing a book listing for a
title by that author to find out more about
them, or to find more titles by the same
author.

© Jason Gorman 2005 186

Example Book Titles

© Jason Gorman 2005 187

Genre : Sci-Fi
Mere seconds before the Earth is to be demolished by
an alien construction crew, journeyman Arthur Dent is
swept off the planet by his friend Ford Prefect, a
researcher penning a new edition of "The Hitchhiker's
Guide to the Galaxy."

ISBN: 0330258648

Price: £6.99

Published: October 12, 1979

© Jason Gorman 2005 188

Genre : Non-Fiction
Many w orking programmers have litt le time for keeping up w ith the
latest advances from the w orld of software engineering. UML
Distilled: Applying the Standard Object Modeling Language
provides a quick, useful take on one of the f ield's most important
recent developments: the emergence of the Unif ied Modeling
Language (UML). UML Distilled offers a useful perspective on what
UML is and w hat it's good for.

ISBN: 0201325632

Price: £25.99

Published: August 8, 1997

This w ork on UML - created by OO technology experts, Booch,
Rumbaugh and Jacobson - offers detailed and practical guidance to
the UML notation in the context of real world software development.
The book also offers useful summaries of UML notation on the back
and the front covers.

Author’s Summary:

Publisher: Addison Wesley

