
© Jason Gorman 2005. All rights reserved.

UML for Analysts

Jason Gorman

© Jason Gorman 2005. All rights reserved.

"I am currently working on a
team which is [in] the process
of adopting RUP and UML
standards and practices. After
one of our design sessions, I
needed to lookup some
information and came across
your site. Absolutely great!
Most [of] the information I've
had questions about is
contained within your tutorials
and then some."

"Really great site... I have been
trying to grasp UML since the
day I saw Visual Modeler. I
knew a few things but there
were gaps. Thanks to your site
they have shrunk
considerably."

"I went on a UML training
course three months ago, and
came out with a big folder full
of hand-outs and no real
understanding of UML and how
to use it on my project. I spent
a day reading the UML for
.NET tutorials and it was a
much easier way to learn.
'Here's the diagram. Now
here's the code.' Simple."

Requirements Analysis
Using UML (2 Days)
Since Autumn 2003, over 180,000 Java and .NET developers have
learned the Unif ied Modeling Language from Parlez UML
(http://www.parlezuml.com) , making it one of the most popular
UML training resources on the Internet.

Modeling For A Reason
Unlike other UML courses, Requirements Analysis using UML
introduces only the elements of modeling you w ill need to get the job
done.

Learning By Doing
By w orking through a practical mini-project, you w ill learn key
modeling notations as w ell as useful analysis techniques within a
simple iterative process that you will be able to apply to your ow n
projects immediately.

Beyond Use Cases
Other analysis courses start w ith functional requirements and leave
out the critical element of any software project – where do those
requirements come from in the f irst place?

Requirements Analysis using UML starts at the beginning w ith
business requirements and business models, and demonstrates a
simple process for getting from business goals to system use cases
and beyond, giving clear traceability at all levels of your enterprise
architecture

www.parlezuml.com/training.htm
advertisement

© Jason Gorman 2005. All rights reserved.

What Will I Learn?
Requirements Analysis using UML takes you on a journey from the business
goals of your project to an object oriented description of system functionality. You
will only learn what you need to know to get the job done, but enough to provide a
solid foundation for further learning.

Class Diagrams
Model types of objects
and the relationships
between them.

Activity Diagrams
Model the flow of use cases
and single and multi-
threaded code

Statechart Diagrams
Model the lifecycle of
objects and event-driven
logic

Use Case Diagrams
Model the users of the
system and the goals they
can achieve by using it

Object Diagrams & Filmstrips
Model snapshots of the running
system and show how actions
change object state

Packages &
Model Management
Organise your logical and
physical models with packages

User Experience Modeling
Design user-centred systems
with UML

Business Modeling
Apply UML to business
goals, processes, rules and
structure

Enterprise Architecture
Tracing your models
through the layers of the
Zachman Framework

Plus simple approaches to:

• Iterative & Incremental Development
• Change & Defect Management
• User Acceptance Testing
• Project Planning & Tracking

www.parlezuml.com/training.htm

advertisement

© Jason Gorman 2005. All rights reserved.

In This Section
• Use Case diagrams
• Class Diagrams
• Object Diagrams & Filmstrips
• Sequence Diagrams
• State Transition Diagrams
• Packages & Model Management
• Model-View-Controller & Robustness Analysis

© Jason Gorman 2005. All rights reserved.

Use Case Diagrams

© Jason Gorman 2005. All rights reserved.

Users Achieve Functional Goals Through Use Cases

Withdraw cash

Check balance

Request mini-statement

Deposit cheques

To get cash

To see details of recent
transactions

To see how much
money is in the account

To deposit money
without going in to

the branch

© Jason Gorman 2005. All rights reserved.

Use Case Diagrams

Withdraw cash

use case name

Card Holder

actor name

actor

ATM

system
boundary

“communicates”

use case

Bank System

© Jason Gorman 2005. All rights reserved.

Relationships Between Use Cases
Make tea

Boil water

<<include>>

Go to shops

[out of tea] <<extend>>

Walk to shops Drive to shops

Make instant coffee

[out of coffee] <<extend>>

<<include>>

© Jason Gorman 2005. All rights reserved.

Class Diagrams

© Jason Gorman 2005. All rights reserved.

Classes

Account
Balance : float = 0
Limit : float = 0
deposit(amount : float)
withdraw(amount : float)
getAvailableFunds() : float

Class name

Attributes compartment

Operations compartment

© Jason Gorman 2005. All rights reserved.

Attributes

Person
First Name : string
Last Name : string
Title : string = “Mr”
Age
/ FullName = FirstName + “ “ + LastName

Attribute name = “FirstName”
Attribute type = “string”

Attribute default value = “Mr”

Only attribute name is
mandatory

Attribute values can be derived (denoted by
/ before attribute name)

© Jason Gorman 2005. All rights reserved.

Operations

Person

wed(partner : Person)
calculateWealth() : float
gossip(about : Person, to : Person)

Operation name = “Wed”
Argument name = “partner”
Argument type = “Person”

Return type = “float”

Argument #1 name = “about”
Argument #2 name = “to”

Empty
attributes

compartment

© Jason Gorman 2005. All rights reserved.

Visibility

Account
- Balance : float = 0
Limit : float = 0

+ deposit(amount : float)
+ withdraw(amount : float)
~ getAvailableFunds() : float

- = private

= protected

+ = public

~ = package

© Jason Gorman 2005. All rights reserved.

Scope

SeaLion
- population : int
- age : int
+ getPopulation() : int
+ getAge() : int
+ setAge(value : int)

Class
(eg,
SeaLion.getPopulation())

Instance
(eg, mySeaLion.getAge())

© Jason Gorman 2005. All rights reserved.

Multiplicity

Mormon
Wife[0..*] : Mormon
wed(partner: Mormon)
calculateWealth() : float
gossip(about[*] : Person, to[*] : Person)

A Mormon can be married to
more than one person at the
ame time, but may not be
married at all.
The lower bound of the
multiplicity of Wife is therefore
0, and the upper bound is
many (*)

A Mormon can gossip to many
people at once about many
people
* Implies a lower bound of 0

© Jason Gorman 2005. All rights reserved.

Associations
Customer

accounts[0..*] : Account

Is the same as…

Customer
Account

accounts
0..*

Association End:
Role = “accounts”
Multiplicity = “0..*”
Type = Collection of
Account

Account
holders[1..2] : Customer

1..2
holders

Association End:
Role = “holders”
Multiplicity = “1..2”
Type = Collection of
Customer

© Jason Gorman 2005. All rights reserved.

Navigation

Customer
Account

accounts
0..*

1..2
holders

myAccount.holders

myCustomer.accounts

© Jason Gorman 2005. All rights reserved.

Navigability

Customer
Account

accounts
0..*

1..2
holders

myAccount.holders

myCustomer.accounts

© Jason Gorman 2005. All rights reserved.

Aggregation

Personal Computer Hard drive

Graphics Card

Motherboard CPU1..4

1..*

1

1..2

0..1

0..1

0..1

0..1

© Jason Gorman 2005. All rights reserved.

Composition

Invoice Line Item0..*1

© Jason Gorman 2005. All rights reserved.

Generalization

eat(food : Food)

Scuba Diver Painter

Person

eat(food : Food) eat(food : Food)

© Jason Gorman 2005. All rights reserved.

Abstract Classes & Operations

eat(food : Food)

Scuba Diver Painter

Person

eat(food : Food) eat(food : Food)

© Jason Gorman 2005. All rights reserved.

Interfaces & Realization

eat(food : Food)

Scuba Diver

<<interface>>
Person

eat(food : Food)
Scuba Diver

eat(food : Food)

Person

© Jason Gorman 2005. All rights reserved.

Dependencies

eat(food : Food)

Scuba Diver

<<interface>>
Person

eat(food : Food)

Food

© Jason Gorman 2005. All rights reserved.
advertisement

UML for Managers (1 Day)
The key to success in IT and business projects is effective
communication. Building a shared understanding requires that all
project stakeholders speak the same language.
A Picture Is Worth 1000 Lines of Code
Visual Languages enable project stakeholders to express complex
and subtle ideas in a w ay that is much easier to digest than wordy
written specif ications. Visual Languages make communication and
understanding quicker and easier, and the effective use of Visual
Models can greatly improve a project’s chances of success.
Many Problems. One Visual Language.
The industry-standard Unified Modeling Language can be used to
describe many aspects of your business and the systems w ithin it.
UML can be applied at all levels, from your corporate strategy right
dow n to the design of your databases. This makes it possible to unify
different views of your business and to share and reuse knowledge
more effectively. It also helps you to learn more about your
business and how it could be improved.

Are You Ready to Parlez UML?
UML for Managers introduces business decision makers and IT
strategists to the key aspects of Visual Modeling using UML. It
highlights areas where Visual Modeling could be applied to your
business, and helps you to build a practical and realistic roadmap for
adopting UML across your enterprise.

"I am currently working on a
team which is [in] the process
of adopting RUP and UML
standards and practices. After
one of our design sessions, I
needed to lookup some
information and came across
your site. Absolutely great!
Most [of] the information I've
had questions about is
contained within your tutorials
and then some."

"Really great site... I have been
trying to grasp UML since the
day I saw Visual Modeler. I
knew a few things but there
were gaps. Thanks to your site
they have shrunk
considerably."

"I went on a UML training
course three months ago, and
came out with a big folder full
of hand-outs and no real
understanding of UML and how
to use it on my project. I spent
a day reading the UML for
.NET tutorials and it was a
much easier way to learn.
'Here's the diagram. Now
here's the code.' Simple."

www.parlezuml.com/training.htm

© Jason Gorman 2005. All rights reserved.

Object Diagrams & Filmstrips

© Jason Gorman 2005. All rights reserved.

Instances of Class Diagrams
Invoice Line Item0..*1

myInvoice : Invoice

Item1 : Line Item

Item2 : Line Item

Item3 : Line Item

items

items

items

items

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Object identity [optional] Object type [optional]

© Jason Gorman 2005. All rights reserved.

Object State

: Account
Balance = 400.00

Limit = 250.00

: Customer
Name = “Jason Gorman”

accounts

holders

© Jason Gorman 2005. All rights reserved.

Filmstrips
: Invoice

Item1 : Line Item
quantity = 3

Dry Wipe Marker : Product
unit price = 0.99

Board Rubber : Product
unit price = 3.99

items/ total = 2.97

: Invoice

Item1 : Line Item
quantity = 3

Dry Wipe Marker : Product
unit price = 0.99

Board Rubber : Product
unit price = 3.99

items/ total = 6.96

Item2 : Line Item
quantity = 1

items

new line item(quantity = 1, product = Board Rubber)

© Jason Gorman 2005. All rights reserved.

Sequence Diagrams

© Jason Gorman 2005. All rights reserved.

Objects Interact over Time

b : TypeBa : TypeA

return_value

message(parameter_value)

timeline

instance

focus of control

b returns control to
a (with optional
return value)

A class operation message
with parameter_value

© Jason Gorman 2005. All rights reserved.

Object Creation & Garbage
Collection

someClient

tx : FundsTransferTx
FundsTransferTx(payer, payee, amount)

execute()

payer : Account

withdraw(amount)

payee : Account

deposit(amount)

© Jason Gorman 2005. All rights reserved.

Conditional Messages
tx : FundsTransferTx payer : Account

[amount <= payer.availableFunds] withdraw(amount)

payee : Account

deposit(amount)

© Jason Gorman 2005. All rights reserved.

Assignments
tx : FundsTransferTx payer : Account

[amount <= fundsAvailable] withdraw(amount)

payee : Account

deposit(amount)

fundsAvailable := getAvailableFunds()

© Jason Gorman 2005. All rights reserved.

Iterations
: DataAccessObject : DataReader

notEof := Next()

{while notEof}

© Jason Gorman 2005. All rights reserved.

Recursion
: DAORegistry

load()

© Jason Gorman 2005. All rights reserved.

Using Class Operations
someObject HttpContext

ctx := Current()

ctx : HttpContext

session := Session()

© Jason Gorman 2005. All rights reserved.

State Transition Diagrams

© Jason Gorman 2005. All rights reserved.

Discrete States & State Transitions
Account

Balance : float = 0
deposit(amount : float)
withdraw(amount : float)

•Balance > 0 => in credit
•Balance = 0 => empty
•Balance < 0 => overdrawn

empty overdrawnin credit

start state

end state

withdraw(amount)

withdraw(amount)
[amount > Balance]deposit(amount)

deposit(amount)
[amount = 0 - Balance]

withdraw(amount)
[amount = Balance]

deposit(amount)
[amount > 0 - Balance]

transition guard

eventtransition object
state

© Jason Gorman 2005. All rights reserved.

Transitions & Actions

empty
Overdrawn

in credit

withdraw(amount) / balance = balance - amount

withdraw(amount)
[amount > Balance]
/ balance = balance - amountdeposit(amount)

/ balance = amount

deposit(amount)[amount = 0 - Balance] / balance = 0

withdraw(amount)
[amount = Balance]
/ balance = 0

deposit(amount)
[amount > 0 - Balance]
/ balance = balance + amount

event triggers action(s)

entry/ send nasty letter
do/ charge daily interest

© Jason Gorman 2005. All rights reserved.

active

Sub states & History States

in credit overdrawn

emptyH

frozen

reactivate

freeze

history state

Sub state

super state

© Jason Gorman 2005. All rights reserved.

Packages & Model Management

© Jason Gorman 2005. All rights reserved.

Organising Model Elements into
Packages

objects

Account

Cash Account Settlement Account

Customer1..* 1..2

banking

Use cases

Transfer funds

Check balance

Withdraw cash

Deposit funds

customer

© Jason Gorman 2005. All rights reserved.

System

Package Dependencies

Web Collections

<<import>>

© Jason Gorman 2005. All rights reserved.

Packages & Path Names
System

Web Collections

<<import>> Hashtable

System::Collections::Hashtable

DateTime

System::DateTime

© Jason Gorman 2005. All rights reserved.

Model-View-Controller &
Robustness Analysis

© Jason Gorman 2005. All rights reserved.

Model-View-Controller

View

ControllerModel

call

update

notify

Display model data & accept user actions

Encapsulate problem domain data & logic Execute requested actions by manipulating model

© Jason Gorman 2005. All rights reserved.

UML Stereotypes & Robustness
Analysis

<<boundary>>
Login Page

<<control>>
Login Controller

<<entity>>
User Account

Login Page

Login Controller

User Account

© Jason Gorman 2005. All rights reserved.

www.parlezuml.com

